Thermal Expansion and Rattling Behavior of Gd-Filled Co4Sb12 Skutterudite Determined by High-Resolution Synchrotron X-ray Diffraction
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Crystal Structure
3.2. Thermoelastic Properties
3.3. Mean-Square Displacement
3.4. Local Atomic Bonding
3.5. Microstructure
3.6. Thermoelectric Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bell, L.E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Champier, D. Thermoelectric Generators: A Review of Applications. Energy Convers. Manag. 2017, 140, 167–181. [Google Scholar] [CrossRef]
- Siddique, A.R.M.; Rabari, R.; Mahmud, S.; Heyst, B. Van Thermal Energy Harvesting from the Human Body Using Flexible Thermoelectric Generator (FTEG) Fabricated by a Dispenser Printing Technique. Energy 2016, 115, 1081–1091. [Google Scholar] [CrossRef]
- He, W.; Zhang, G.; Zhang, X.; Ji, J.; Li, G.; Zhao, X. Recent Development and Application of Thermoelectric Generator and Cooler. Appl. Energy 2015, 143, 1–25. [Google Scholar] [CrossRef]
- Yang, J.; Caillat, T. Thermoelectric Materials for Space and Automotive Power Generation. MRS Bull. 2006, 31, 224–229. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex Thermoelectric Materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Sales, B.C.; Mandrus, D.; Williams, R.K. Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials. Science 1996, 272, 1325–1328. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Zhu, J.-L.; Tong, X.; Niu, S.; Zhao, W.-Y. A Review of CoSb3-Based Skutterudite Thermoelectric Materials. J. Adv. Ceram. 2020, 9, 647–673. [Google Scholar] [CrossRef]
- Liu, W.-S.; Zhang, B.-P.; Li, J.-F.; Zhang, H.-L.; Zhao, L.-D. Enhanced Thermoelectric Properties in CoSb3-XTex Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering. J. Appl. Phys. 2007, 102, 103717. [Google Scholar] [CrossRef]
- Sergueev, I.; Glazyrin, K.; Kantor, I.; McGuire, M.A.; Chumakov, A.I.; Klobes, B.; Sales, B.C.; Hermann, R.P. Quenching Rattling Modes in Skutterudites with Pressure. Phys. Rev. B 2015, 91, 224304. [Google Scholar] [CrossRef]
- Nolas, G.S.; Kendziora, C.A. Raman Spectroscopy Investigation of Lanthanide-Filled and Unfilled Skutterudites. Phys. Rev. B-Condens. Matter Mater. Phys. 1999, 59, 6189–6192. [Google Scholar] [CrossRef]
- Nolas, G.S.; Sharp, J.; Goldsmid, H.J. The Phonon—Glass Electron-Crystal Approach to Thermoelectric Materials Research; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Nolas, G.S.; Takizawa, H.; Endo, T.; Sellinschegg, H.; Johnson, D.C. Thermoelectric Properties of Sn-Filled Skutterudites. Appl. Phys. Lett. 2000, 77, 52–54. [Google Scholar] [CrossRef]
- Sales, B.C.; Chakoumakos, B.C.; Mandrus, D. Thermoelectric Properties of Thallium-Filled Skutterudites. Phys. Rev. B 2000, 61, 2475–2481. [Google Scholar] [CrossRef]
- Pei, Y.Z.; Chen, L.D.; Zhang, W.; Shi, X.; Bai, S.Q.; Zhao, X.Y.; Mei, Z.G.; Li, X.Y. Synthesis and Thermoelectric Properties of KyCo4Sb12. Appl. Phys. Lett. 2006, 89, 16–19. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Shi, X.; Chen, L.D.; Zhang, W.Q.; Zhang, W.B.; Pei, Y.Z. Synthesis and Thermoelectric Properties of Sr-Filled Skutterudite SryCo4Sb12. J. Appl. Phys. 2006, 99, 053711. [Google Scholar] [CrossRef]
- Patschke, R.; Zhang, X.; Singh, D.; Schindler, J.; Kannewurf, C.R.; Lowhorn, N.; Tritt, T.; Nolas, G.S.; Kanatzidis, M.G. Thermoelectric Properties and Electronic Structure of the Cage Compounds A2BaCu8Te10 (A = K, Rb, Cs): Systems with Low Thermal Conductivity. Chem. Mater. 2001, 13, 613–621. [Google Scholar] [CrossRef]
- Snyder, G.J.; Christensen, M.; Nishibori, E.; Caillat, T.; Iversen, B.B. Disordered Zinc in Zn4Sb3 with Phonon-Glass and Electron-Crystal Thermoelectric Properties. Nat. Mater. 2004, 3, 458–463. [Google Scholar] [CrossRef]
- Prado-Gonjal, J.; Serrano-Sánchez, F.; Nemes, N.M.; Dura, O.J.; Martínez, J.L.; Fernández-Díaz, M.T.; Fauth, F.; Alonso, J.A. Extra-Low Thermal Conductivity in Unfilled CoSb3-δ Skutterudite Synthesized under High-Pressure Conditions. Appl. Phys. Lett. 2017, 111, 083902. [Google Scholar] [CrossRef]
- Serrano-Sánchez, F.; Prado-Gonjal, J.; Nemes, N.M.; Biskup, N.; Varela, M.; Dura, O.J.; Martínez, J.L.; Fernández-Díaz, M.T.; Fauth, F.; Alonso, J.A. Low Thermal Conductivity in La-Filled Cobalt Antimonide Skutterudites with an Inhomogeneous Filling Factor Prepared under High-Pressure Conditions. J. Mater. Chem. A 2017, 6, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Gainza, J.; Serrano-Sánchez, F.; Prado-Gonjal, J.; Nemes, N.M.; Biskup, N.; Dura, O.J.; Martínez, J.L.; Fauth, F.; Alonso, J.A. Substantial Thermal Conductivity Reduction in Mischmetal Skutterudites Mm x Co 4 Sb 12 Prepared under High-Pressure Conditions, Due to Uneven Distribution of the Rare-Earth Elements. J. Mater. Chem. C 2019, 7, 4124–4131. [Google Scholar] [CrossRef]
- Serrano-Sánchez, F.; Prado-Gonjal, J.; Nemes, N.M.; Biskup, N.; Dura, O.J.; Martínez, J.L.; Fernández-Díaz, M.T.; Fauth, F.; Alonso, J.A. Thermal Conductivity Reduction by Fluctuation of the Filling Fraction in Filled Cobalt Antimonide Skutterudite Thermoelectrics. ACS Appl. Energy Mater. 2018, 1, 6181–6189. [Google Scholar] [CrossRef]
- Gainza, J.; Serrano-Sánchez, F.; Rodrigues, J.E.; Prado-Gonjal, J.; Nemes, N.M.; Biskup, N.; Dura, O.J.; Martínez, J.L.; Fauth, F.; Alonso, J.A. Unveiling the Correlation between the Crystalline Structure of M-Filled CoSb3 (M = Y, K, Sr) Skutterudites and Their Thermoelectric Transport Properties. Adv. Funct. Mater. 2020, 3, 2001651. [Google Scholar] [CrossRef]
- Rodrigues, J.E.F.S.; Gainza, J.; Serrano-Sánchez, F.; Marini, C.; Huttel, Y.; Nemes, N.M.; Martínez, J.L.; Alonso, J.A. Atomic Structure and Lattice Dynamics of CoSb3 Skutterudite-Based Thermoelectrics. Chem. Mater. 2022, 34, 1213–1224. [Google Scholar] [CrossRef]
- Rodrigues, J.E.F.S.; Gainza, J.; Serrano-Sánchez, F.; Ferrer, M.M.; Fabris, G.S.L.; Sambrano, J.R.; Nemes, N.M.; Martínez, J.L.; Popescu, C.; Alonso, J.A. Unveiling the Structural Behavior under Pressure of Filled M0.5Co4Sb12 (M = K, Sr, La, Ce, and Yb) Thermoelectric Skutterudites. Inorg. Chem. 2021, 60, 7413–7421. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, B.; Zhang, L.; Liu, Y.; Yu, D.; Liu, Z.; He, J.; Tian, Y. Gadolinium Filled CoSb3: High Pressure Synthesis and Thermoelectric Properties. Mater. Lett. 2013, 98, 171–173. [Google Scholar] [CrossRef]
- Liu, R.; Chen, X.; Qiu, P.; Liu, J.; Yang, J.; Huang, X.; Chen, L. Low Thermal Conductivity and Enhanced Thermoelectric Performance of Gd-Filled Skutterudites. J. Appl. Phys. 2011, 109, 023719. [Google Scholar] [CrossRef]
- Fitch, A.; Dejoie, C. Combining a Multi-Analyzer Stage with a Two-Dimensional Detector for High-Resolution Powder X-Ray Diffraction: Correcting the Angular Scale. J. Appl. Crystallogr. 2021, 54, 1088–1099. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Mathew, S.; Abraham, A.R.; Chintalapati, S.; Sarkar, S.; Joseph, B.; Venkatesan, T. Temperature Dependent Structural Evolution of WSe2: A Synchrotron x-Ray Diffraction Study. Condens. Matter 2020, 5, 76. [Google Scholar] [CrossRef]
- Vočadlo, L.; Knight, K.S.; Price, G.D.; Wood, I.G. Thermal Expansion and Crystal Structure of FeSi between 4 and 1173 K Determined by Time-of-Flight Neutron Powder Diffraction. Phys. Chem. Miner. 2002, 29, 132–139. [Google Scholar] [CrossRef]
- Senyshyn, A.; Oganov, A.R.; Vasylechko, L.; Ehrenberg, H.; Bismayer, U.; Berkowski, M.; Matkovskii, A. The Crystal Structure and Thermal Expansion of the Perovskite-Type Nd0.75Sm0.25GaO3: Powder Diffraction and Lattice Dynamical Studies. J. Phys. Condens. Matter 2004, 16, 253–265. [Google Scholar] [CrossRef] [Green Version]
- Vočadlo, N.L.; Price, G.D. The Grüneisen Parameter—Computer Calculations via Lattice Dynamics. Phys. Earth Planet. Inter. 1994, 82, 261–270. [Google Scholar] [CrossRef]
- Oganov, A.R.; Brodholt, J.P.; Price, G.D. Comparative Study of Quasiharmonic Lattice Dynamics, Molecular Dynamics and Debye Model Applied to MgSiO3 Perovskite. Phys. Earth Planet. Inter. 2000, 122, 277–288. [Google Scholar] [CrossRef]
- Shirotani, I.; Noro, T.; Hayashi, J.; Sekine, C.; Giri, R.; Kikegawa, T. X-Ray Study with Synchrotron Radiation for P- and Sb-Based Skutterudite Compounds at High Pressures. J. Phys. Condens. Matter 2004, 16, 7853–7862. [Google Scholar] [CrossRef]
- Nielsen, M.D.; Ozolins, V.; Heremans, J.P. Lone Pair Electrons Minimize Lattice Thermal Conductivity. Energy Environ. Sci. 2013, 6, 570–578. [Google Scholar] [CrossRef]
- Abia, C.; López, C.A.; Gainza, J.; Rodrigues, J.E.F.S.; Ferrer, M.M.; Nemes, N.M.; Dura, O.J.; Martínez, J.L.; Fernández-Díaz, M.T.; Álvarez-Galván, C.; et al. The Structural Evolution, Optical Gap, and Thermoelectric Properties of the RbPb2Br5 Layered Halide, Prepared by Mechanochemistry. J. Mater. Chem. C 2022, 10, 6857–6865. [Google Scholar] [CrossRef]
- Nakatsuka, A.; Yoshiasa, A.; Fujiwara, K.; Ohtaka, O. Variable-Temperature Single-Crystal X-Ray Diffraction Study of SrGeO3 High-Pressure Perovskite Phase. J. Mineral. Petrol. Sci. 2018, 113, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.E.F.S.; Escanhoela, C.A.; Fragoso, B.; Sombrio, G.; Ferrer, M.M.; Álvarez-Galván, C.; Fernández-Díaz, M.T.; Souza, J.A.; Ferreira, F.F.; Pecharromán, C.; et al. Experimental and Theoretical Investigations on the Structural, Electronic, and Vibrational Properties of Cs2AgSbCl6 Double Perovskite. Ind. Eng. Chem. Res. 2021, 60, 18918–18928. [Google Scholar] [CrossRef]
- Mi, J.-L.; Christensen, M.; Nishibori, E.; Iversen, B.B. Multitemperature Crystal Structures and Physical Properties of the Partially Filled Thermoelectric Skutterudites M0.1Co4Sb12 (M = La, Ce, Nd, Sm, Yb, and Eu). Phys. Rev. B 2011, 84, 064114. [Google Scholar] [CrossRef]
- de Abrantes, J.G.; Cantarino, M.R.; da Silva Neto, W.R.; Freire, V.V.; Figueiredo, A.G.; Germano, T.M.; Mounssef, B.; Bittar, E.M.; Leithe-Jasper, A.; Garcia, F.A. Vibrational and Structural Properties of the RFe4Sb12 (R = Na, K, Ca, Sr, Ba) Filled Skutterudites. Phys. Rev. Mater. 2022, 6, 085403. [Google Scholar] [CrossRef]
- Morelli, D.T.; Meisner, G.P. Low Temperature Properties of the Filled Skutterudite CeFe4Sb12. J. Appl. Phys. 1995, 77, 3777–3781. [Google Scholar] [CrossRef]
- Daniel, M.; Pease, D.M.; Van Hung, N.; Budnick, J.I. Local Force Constants of Transition Metal Dopants in a Nickel Host: Comparison to Mossbauer Studies. Phys. Rev. B-Condens. Matter Mater. Phys. 2004, 69, 134414. [Google Scholar] [CrossRef]
- Uher, C. Chapter 5 Skutterudites: Prospective Novel Thermoelectrics. In Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 2001; Volume 69, pp. 139–253. ISBN 012752178X. [Google Scholar]
- Hanus, R.; Guo, X.; Tang, Y.; Li, G.; Snyder, G.J.; Zeier, W.G. A Chemical Understanding of the Band Convergence in Thermoelectric CoSb3 Skutterudites: Influence of Electron Population, Local Thermal Expansion, and Bonding Interactions. Chem. Mater. 2017, 29, 1156–1164. [Google Scholar] [CrossRef]
- Oftedal, I. The Crystal Structure of Skutterudite and Related Minerals. Nor. Geol. Tidsskr. 1926, 8, 250–257. [Google Scholar]
- Tang, Y.; Gibbs, Z.M.; Agapito, L.A.; Li, G.; Kim, H.S.; Nardelli, M.B.; Curtarolo, S.; Snyder, G.J. Convergence of Multi-Valley Bands as the Electronic Origin of High Thermoelectric Performance in CoSb3 Skutterudites. Nat. Mater. 2015, 14, 1223–1228. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, P.; Duan, H.; Chen, J.; Snyder, G.J.; Shi, X.; Iversen, B.B.; Chen, L. Enhanced Thermoelectric Performance in Rare-Earth Filled-Skutterudites. J. Mater. Chem. C 2016, 4, 4374–4379. [Google Scholar] [CrossRef]
- Snyder, G.J.; Snyder, A.H.; Wood, M.; Gurunathan, R.; Snyder, B.H.; Niu, C. Weighted Mobility. Adv. Mater. 2020, 32, 2001537. [Google Scholar] [CrossRef]
- Gainza, J.; Serrano-Sánchez, F.; Nemes, N.M.; Dura, O.J.; Martínez, J.L.; Fauth, F.; Alonso, J.A. Strongly Reduced Lattice Thermal Conductivity in Sn-Doped Rare-Earth (M) Filled Skutterudites MxCo4Sb12−ySny, Promoted by Sb–Sn Disordering and Phase Segregation. RSC Adv. 2021, 11, 26421–26431. [Google Scholar] [CrossRef]
- Meledath Valiyaveettil, S.; Nguyen, D.L.; Wong, D.P.; Hsing, C.R.; Paradis-Fortin, L.; Qorbani, M.; Sabbah, A.; Chou, T.L.; Wu, K.K.; Rathinam, V.; et al. Enhanced Thermoelectric Performance in Ternary Skutterudite Co(Ge0.5Te0.5)3 via Band Engineering. Inorg. Chem. 2022, 61, 4442–4452. [Google Scholar] [CrossRef]
- Meledath Valiyaveettil, S.; Qorbani, M.; Hsing, C.-R.; Chou, T.-L.; Paradis-Fortin, L.; Sabbah, A.; Srivastava, D.; Nguyen, D.-L.; Ho, T.-T.; Billo, T.; et al. Enhanced Thermoelectric Performance of Skutterudite Co1−yNiySn1.5Te1.5−x with Switchable Conduction Behavior. Mater. Today Phys. 2022, 28, 100889. [Google Scholar] [CrossRef]
Atom | Wyckoff | x | y | z | Ueq (10−3 Å2) | Site Occ. |
---|---|---|---|---|---|---|
Co | 8c | 0.25 | 0.25 | 0.25 | 7.4(1) | 1 |
Sb | 24g | 0 | 0.33511(3) | 0.15792(3) | 7.05(4) | 1 |
Gd | 2a | 0 | 0 | 0 | 28(7) | 0.033(2) |
Unit-cell parameters | Bond lengths | Reliability factors | ||||
(Å) | 9.042849(7) | d0 (Co–Sb) (Å) | 2.5291(3) | Rp (%) | 6.30 | |
(Å3) | 739.4619(10) | d1 (Sb–Sb) (Å) | 2.8561(4) | Rexp (%) | 4.94 | |
(g·cm−3) | 7.644(1) | d2 (Sb–Sb) (Å) | 2.9823(4) | Rwp (%) | 6.86 | |
d3 (Gd–Sb) (Å) | 3.3499(3) | RBragg (%) | 1.92 |
Structural Parameter | |||
---|---|---|---|
Co4Sb12 | Gd0.033(2)Co4Sb12 | Yb0.3Co4Sb12 | |
d0 (Co–Sb) | 8.9 | 9.1 | 9.1 |
d1 (Sb–Sb) | 9.7 | 9.6 | 12.6 |
d2 (Sb–Sb) | 12.7 | 16.8 | 15.9 |
d3 (M–Sb) | - | 7.3 | 8.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, J.E.F.S.; Gainza, J.; Serrano-Sánchez, F.; Silva, R.S., Jr.; Dejoie, C.; Nemes, N.M.; Dura, O.J.; Martínez, J.L.; Alonso, J.A. Thermal Expansion and Rattling Behavior of Gd-Filled Co4Sb12 Skutterudite Determined by High-Resolution Synchrotron X-ray Diffraction. Materials 2023, 16, 370. https://doi.org/10.3390/ma16010370
Rodrigues JEFS, Gainza J, Serrano-Sánchez F, Silva RS Jr., Dejoie C, Nemes NM, Dura OJ, Martínez JL, Alonso JA. Thermal Expansion and Rattling Behavior of Gd-Filled Co4Sb12 Skutterudite Determined by High-Resolution Synchrotron X-ray Diffraction. Materials. 2023; 16(1):370. https://doi.org/10.3390/ma16010370
Chicago/Turabian StyleRodrigues, João E. F. S., Javier Gainza, Federico Serrano-Sánchez, Romualdo S. Silva, Jr., Catherine Dejoie, Norbert M. Nemes, Oscar J. Dura, José L. Martínez, and José Antonio Alonso. 2023. "Thermal Expansion and Rattling Behavior of Gd-Filled Co4Sb12 Skutterudite Determined by High-Resolution Synchrotron X-ray Diffraction" Materials 16, no. 1: 370. https://doi.org/10.3390/ma16010370
APA StyleRodrigues, J. E. F. S., Gainza, J., Serrano-Sánchez, F., Silva, R. S., Jr., Dejoie, C., Nemes, N. M., Dura, O. J., Martínez, J. L., & Alonso, J. A. (2023). Thermal Expansion and Rattling Behavior of Gd-Filled Co4Sb12 Skutterudite Determined by High-Resolution Synchrotron X-ray Diffraction. Materials, 16(1), 370. https://doi.org/10.3390/ma16010370