Optical Properties, Microstructure, and Phase Fraction of Multi-Layered Monolithic Zirconia with and without Yttria-Gradient
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Preparation
2.2. Optical Properties Evaluation
2.3. Field Emission Scanning Electron Microscopy (FE-SEM) Analysis
2.4. X-ray Diffraction (XRD) Analysis
2.5. Statistical Analysis
3. Results
3.1. Total Transmittance
3.2. Translucency Parameter (TP)
3.3. Contrast Ratio (CR)
3.4. Opalescence Parameter (OP)
3.5. FE-SEM Analysis
3.6. XRD Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kolakarnprasert, N.; Kaizer, M.R.; Kim, D.K.; Zhang, Y. New multi-layered zirconias: Composition, microstructure and translucency. Dent. Mater. 2019, 35, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Guth, J.F.; Erdelt, K.; Stimmelmayr, M.; Kappert, H.; Beuer, F. Light transmittance by a multi-coloured zirconia material. Dent. Mater. J. 2015, 34, 310–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.K. Translucency of human teeth and dental restorative materials and its clinical relevance. J. Biomed. Opt. 2015, 20, 045002. [Google Scholar] [CrossRef] [PubMed]
- Michailova, M.; Elsayed, A.; Fabel, G.; Edelhoff, D.; Zylla, I.M.; Stawarczyk, B. Comparison between novel strength—gradient and color—gradient multilayered zirconia using conventional and high-speed sintering. J. Mech. Behav. Biomed. Mater. 2020, 111, 103977. [Google Scholar] [CrossRef] [PubMed]
- Benetti, P.; Kelly, J.R.; Della Bona, A. Analysis of thermal distributions in veneered zirconia and metal restorations during firing. Dent. Mater. 2013, 29, 1166–1172. [Google Scholar] [CrossRef]
- Baldassarri, M.; Stappert, C.F.; Wolff, M.S.; Thompson, V.P.; Zhang, Y. Residual stresses in porcelain-veneered zirconia prostheses. Dent. Mater. 2012, 28, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Tholey, M.J.; Swain, M.V.; Thiel, N. Thermal gradients and residual stresses in veneered Y-TZP frameworks. Dent. Mater. 2011, 27, 1102–1110. [Google Scholar] [CrossRef]
- Liu, H.; Inokoshi, M.; Nozaki, K.; Shimizubata, M.; Nakai, H.; Too, T.D.C.; Minakuchi, S. Influence of high-speed sintering protocols on translucency, mechanical properties, microstructure, crystallography, and low-temperature degradation of highly translucent zirconia. Dent. Mater. 2022, 38, 451–468. [Google Scholar] [CrossRef]
- Inokoshi, M.; Shimizu, H.; Nozaki, K.; Takagaki, T.; Yoshihara, K.; Nagaoka, N.; Zhang, F.; Vleugels, J.; Van Meerbeek, B.; Minakuchi, S. Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dent. Mater. 2018, 34, 508–518. [Google Scholar] [CrossRef]
- Zhang, Y. Making yttria-stabilized tetragonal zirconia translucent. Dent. Mater. 2014, 30, 1195–1203. [Google Scholar] [CrossRef]
- Zhang, F.; Reveron, H.; Spies, B.C.; Van Meerbeek, B.; Chevalier, J. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater. 2019, 91, 24–34. [Google Scholar] [CrossRef]
- Kim, H.K. Optical and mechanical properties of highly translucent dental zirconia. Materials 2020, 13, 3395. [Google Scholar] [CrossRef]
- Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent. Mater. 2016, 32, e327–e337. [Google Scholar] [CrossRef]
- Yan, J.; Kaizer, M.R.; Zhang, Y. Load-bearing capacity of lithium disilicate and ultra-translucent zirconias. J. Mech. Behav. Biomed. Mater. 2018, 88, 170–175. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Ozcan, M.; Hallmann, L.; Ender, A.; Mehl, A.; Hammerlet, C.H.F. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin. Oral Investig. 2013, 17, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Darmawan, B.A.; Fisher, J.G.; Trung, D.T.; Sakthiabirami, K.; Park, S.W. Two-step sintering of partially stabilized zirconia for applications in ceramic crowns. Materials 2020, 13, 1857. [Google Scholar] [CrossRef] [Green Version]
- Liebermann, A.; Freitas Rafael, C.; Colle Kauling, A.E.; Edelhoff, D.; Ueda, K.; Seiffert, A.; Maziero Volpato, C.A.; Güth, J.F. Transmittance of visible and blue light through zirconia. Dent. Mater. J. 2018, 37, 812–817. [Google Scholar] [CrossRef] [Green Version]
- Elsaka, S.E. Optical and mechanical properties of newly developed monolithic multilayer zirconia. J. Prosthodont. 2019, 28, e279–e284. [Google Scholar] [CrossRef] [Green Version]
- Cekic-Nagas, I.; Egilmez, F.; Ergun, G.; Kaya, B.M. Light transmittance of zirconia as a function of thickness and microhardness of resin cements under different thickness of zirconia. Med. Oral Patol. Oral Cir. Bucal. 2013, 18, e212–e218. [Google Scholar] [CrossRef]
- Shiraishi, T.; Watanabe, I. Thickness dependence of light transmittance, translucency and opalescence of a ceria-stabilized zirconia/alumina nanocomposite for dental applications. Dent. Mater. 2016, 32, 660–667. [Google Scholar] [CrossRef]
- Vichi, A.; Sedda, M.; Fonzar, R.F.; Carrabba, M.; Ferrari, M. Comparison of Contrast Ratio, Translucency Parameter, and Flexural Strength of Traditional and “Augmented Translucency” Zirconia for CEREC CAD/CAM System. J. Esthet. Restor. Dent. 2016, 28 (Suppl. S1), S32–S39. [Google Scholar] [CrossRef]
- Della Bona, A.; Nogueira, A.D.; Pecho, O.E. Optical properties of CAD-CAM ceramic systems. J. Dent. 2014, 42, 1202–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barizon, K.T.L.; Bergeron, C.; Vargas, M.A.; Qian, F.; Cobb, D.S.; Gratton, D.G.; Geradeli, S. Ceramic materials for porcelain veneers. Part I: Correlation between translucency parameters and contrast ratio. J. Prosthet. Dent. 2013, 110, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Baldissara, P.; Wandscher, V.F.; Marchionatti, A.M.E.; Parisi, C.; Monaco, C.; Ciocca, L. Translucency of IPS e.max and cubic zirconia monolithic crowns. J. Prosthet. Dent. 2018, 120, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Yu, B. Measurement of opalescence of tooth enamel. J. Dent. 2007, 35, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K. Opalescence of human teeth and dental esthetic restorative materials. Dent. Mater. J. 2016, 35, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.I.; Shin, H.J.; Kwon, Y.H.; Seol, H.J. Effect of cooling rate on mechanical properties, translucency, opalescence, and light transmission properties of monolithic 4Y-TZP during glazing. Materials 2022, 15, 4357. [Google Scholar] [CrossRef]
- Cho, M.H.; Seol, H.J. Effect of cooling rate during glazing on the mechanical and optical properties of monolithic zirconia with 3 mol% yttria content. Materials 2021, 14, 7474. [Google Scholar] [CrossRef]
- Shiraishi, T.; Wood, D.J.; Shinozaki, N.; Van Noort, R. Optical properties of base dentin ceramics for all-ceramic restorations. Dent. Mater. 2011, 27, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Al-Juaila, E.; Osman, E.; Segaan, L.; Shrebaty, M.; Farghaly, E.A. Comparison of translucency for different thicknesses of recent types of esthetic zirconia ceramics versus conventional ceramics … (in vitro study). Futur. Dent. J. 2018, 4, 297–301. [Google Scholar] [CrossRef]
- Kurtulmus-Yilmaz, S.; Ulusoy, M. Comparison of the translucency of shaded zirconia all-ceramic systems. J. Adv. Prosthodont. 2014, 6, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, A.D.; Della Bona, A. The effect of a coupling medium on color and translucency of CAD–CAM ceramics. J. Dent. 2013, 41 (Suppl. 3), e18–e23. [Google Scholar] [CrossRef] [Green Version]
- Cokic, S.M.; Vleugels, J.; Van Meerbeek, B.; Camargo, B.; Willems, E.; Li, M.; Zhang, F. Mechanical properties, aging stability and translucency of speed-sintered zirconia for chairside restorations. Dent. Mater. 2020, 36, 959–972. [Google Scholar] [CrossRef]
- Kanchanavasita, W.; Triwatana, P.; Suputtamongkol, K.; Thanapitak, A.; Chatchaiganan, M. Contrast Ratio of Six Zirconia-Based Dental Ceramics. J. Prosthodont. 2014, 23, 456–461. [Google Scholar] [CrossRef]
- Song, S.H.; Yu, B.; Ahn, J.S.; Lee, Y.K. Opalescence and fluorescence properties of indirect and direct resin materials. Acta Odontol. Scand. 2008, 66, 236–242. [Google Scholar] [CrossRef]
- Kim, B.K.; Yun, J.H.; Jung, W.K.; Lim, C.H.; Zhang, Y.; Kim, D.K. Mitigating grain growth in fully stabilized zirconia via a two-step sintering strategy for esthetic dental restorations. Int. J. Appl. Ceram. Technol. 2022, 1–13. [Google Scholar] [CrossRef]
- Yamashita, I.; Tsukuma, K. Phase Separation and Hydrothermal Degradation of 3 mol% Y2O3-ZrO2 Ceramics. J. Ceram. Soc. Japan 2005, 113, 530–533. [Google Scholar] [CrossRef] [Green Version]
- Belli, R.; Hurle, K.; Schürrlein, J.; Petschelt, A.; Werbach, K.; Peterlik, H.; Rabe, T.; Mieller, B.; Lohbauer, U. A revised relationship between fracture toughness and Y2O3 content in modern dental zirconias. ChemRxiv 2021. [Google Scholar] [CrossRef]
- Ziyad, T.A.; Abu-Naba’a, L.A.; Almohammed, S.N. Optical properties of CAD-CAM monolithic systems compared: Three multi-layered zirconia and one lithium disilicate system. Heliyon 2021, 7, e08151. [Google Scholar] [CrossRef]
- Lee, Y.K. Influence of filler on the difference between the transmitted and reflected colors of experimental resin composites. Dent. Mater. 2008, 24, 1243–1247. [Google Scholar] [CrossRef]
- Cho, M.S.; Yu, B.; Lee, Y.K. Opalescence of all-ceramic core and veneer materials. Dent. Mater. 2009, 25, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Leon, A.; Morikawa, Y.; Kawahara, M.; Mayo, M.J. Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Mater. 2002, 50, 4555–4562. [Google Scholar] [CrossRef]
- Sanchez-Bajo, F.; Cumbrera, F.L.; Guiberteau, F. Microstructural characterization of Y-PSZ (4 mol%) polycrystals by means of X-ray diffraction experiments. Mater. Lett. 1992, 15, 39–44. [Google Scholar] [CrossRef]
- Scott, H.G. Phase relationships in the zirconia-yttria system. J. Mater. Sci. 1975, 10, 1527–1535. [Google Scholar] [CrossRef]
- Borik, M.A.; Bublik, V.T.; Vilkova, M.Y.; Kulebyakin, A.V.; Lomonova, E.E.; Milovich, P.O.; Myzina, V.A.; Ryabockinac, P.A.; Tabachkova, N.Y.; Ushakov, S.N. Structure, phase composition and mechanical properties of ZrO2 partially stabilized with Y2O3. Mod. Electron. Mater. 2015, 1, 26–31. [Google Scholar] [CrossRef]
- Kim, H.K. Effect of a rapid-cooling protocol on the optical and mechanical properties of dental monolithic zirconia containing 3–5 mol% Y2O3. Materials 2020, 13, 1923. [Google Scholar] [CrossRef] [Green Version]
- Sanal, F.A.; Kilinc, H. Effect of shade and sintering temperature on the translucency parameter of a novel multi-layered monolithic zirconia in different thicknesses. J. Esthet. Restor. Dent. 2020, 32, 607–614. [Google Scholar] [CrossRef]
Material | Zirconia Type | Chemical Composition (wt%) | ||||
---|---|---|---|---|---|---|
ZrO2 | HfO2 | Y2O3 | Al2O3 | Others | ||
e.max MT Multi | 5Y-PSZ (enamel layer) 4Y-PSZ (dentin layer) | 86–93.5 | ≤5 | >6.5–≤ 8 | ≤1 | ≤1 |
Katana STML | 5Y-PSZ | 88–93 (ZrO2 + HfO2) | 7–10 | 0–2 (Al2O3 + Others) |
Material | Code | Stage | Heating and Cooling Rate | Temp. | Holding Time (min) |
---|---|---|---|---|---|
(°C/min) | (°C) | ||||
e.max MT Multi | MT | 1 | 10 | 900 | 30 |
2 | 3 | 1500 | 120 | ||
3 | −10 | 900 | 0 | ||
4 | −8 | 300 | 0 | ||
Katana STML | ST | 1 | 10 | 1550 | 120 |
2 | −10 | 100 | 0 |
AT (%) | EL | TL1 | TL2 | DL |
---|---|---|---|---|
* e.max MT Multi | 37.35 Bc (0.65) | 33.55 Ab (0.64) | 33.55 Bb (0.64) | 31.63 Ba (0.41) |
Katana STML | 35.48 Ad (0.42) | 33.62 Ac (0.42) | 31.71 Ab (0.45) | 30.59 Aa (0.21) |
TP | EL | TL1 | TL2 | DL |
* e.max MT Multi | 12.89 Ab (0.20) | 12.41 Aa (0.13) | 12.41 Aa (0.13) | 12.06 Aa (0.32) |
Katana STML | 13.06 Ab (0.12) | 13.00 Bb (0.12) | 12.57 Aa (0.19) | 12.44 Aa (0.19) |
CR | EL | TL1 | TL2 | DL |
* e.max MT Multi | 0.69 Aa (0.006) | 0.72 Ab (0.002) | 0.72 Ab (0.002) | 0.74 Ac (0.006) |
Katana STML | 0.72 Ba (0.004) | 0.73 Bb (0.001) | 0.75 Bc (0.005) | 0.76 Bd (0.004) |
OP | EL | TL1 | TL2 | DL |
* e.max MT Multi | 14.52 Aa (0.46) | 17.41 Ab (0.84) | 17.41 Ab (0.84) | 18.03 Ab (0.69) |
Katana STML | 15.23 Aa (0.46) | 17.17 Ab (0.60) | 19.34 Bc (0.64) | 19.82 Bc (0.49) |
Material | Grain Size (μm) | EL | TL1 | TL2 | DL |
---|---|---|---|---|---|
* e.max MT Multi | M | 1.243 Ac | 1.122 Ab | 1.122 Ab | 0.701 Aa |
±SD | (0.136) | (0.111) | (0.111) | (0.057) | |
Katana STML | M | 1.616 Ba | 1.609 Ba | 1.596 Ba | 1.624 Ba |
±SD | (0.221) | (0.284) | (0.234) | (0.199) |
Material | e.Max MT Multi | Katana STML | |||||
---|---|---|---|---|---|---|---|
Parameter | EL | TL | DL | EL | TL1 | TL2 | DL |
Rwp (%) | 3.0952 | 3.0204 | 2.9335 | 3.3502 | 3.3291 | 3.5352 | 3.2857 |
GOF | 3.1381 | 3.3069 | 3.1238 | 3.3720 | 3.3635 | 3.8684 | 3.5971 |
T-phase | |||||||
Fraction (wt%) | 12.74 (29) | 16.72 (31) | 24.14 (34) | 14.83 (29) | 14.56 (26) | 14.10 (29) | 14.26 (28) |
a (Å) | 3.6072 | 3.6076 | 3.6076 | 3.6074 | 3.6071 | 3.6078 | 3.6073 |
c (Å) | 5.1814 | 5.1819 | 5.1813 | 5.1828 | 5.1829 | 5.1828 | 5.1829 |
Tetragonality, c/a√2 | 1.0157 | 1.0157 | 1.0156 | 1.0159 | 1.0160 | 1.0158 | 1.0160 |
Y2O3 (mol%) | 2.5694 | 2.5752 | 2.6222 | 2.4825 | 2.4411 | 2.5274 | 2.4635 |
T′-phase | |||||||
Fraction (wt%) | 37.51 (53) | 35.74 (54) | 28.62 (46) | 28.25 (44) | 26.76 (39) | 29.35 (47) | 28.74 (44) |
a (Å) | 3.6254 | 3.6262 | 3.6262 | 3.6262 | 3.6259 | 3.6264 | 3.6262 |
c (Å) | 5.1544 | 5.1551 | 5.1553 | 5.1558 | 5.1555 | 5.1555 | 5.1554 |
Tetragonality, c/a√2 | 1.0053 | 1.0052 | 1.0053 | 1.0054 | 1.0054 | 1.0053 | 1.0053 |
Y2O3 (mol%) | 6.8766 | 6.9136 | 6.8967 | 6.8545 | 6.8438 | 6.9038 | 6.8882 |
C-phase | |||||||
Fraction (wt%) | 49.70 (60) | 47.51 (65) | 47.24 (61) | 56.92 (51) | 58.67 (46) | 56.55 (57) | 57.00 (52) |
c (Å) | 5.1367 | 5.1377 | 5.1373 | 5.1390 | 5.1389 | 5.1388 | 5.1389 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, M.-H.; Seol, H.-J. Optical Properties, Microstructure, and Phase Fraction of Multi-Layered Monolithic Zirconia with and without Yttria-Gradient. Materials 2023, 16, 41. https://doi.org/10.3390/ma16010041
Cho M-H, Seol H-J. Optical Properties, Microstructure, and Phase Fraction of Multi-Layered Monolithic Zirconia with and without Yttria-Gradient. Materials. 2023; 16(1):41. https://doi.org/10.3390/ma16010041
Chicago/Turabian StyleCho, Mi-Hyang, and Hyo-Joung Seol. 2023. "Optical Properties, Microstructure, and Phase Fraction of Multi-Layered Monolithic Zirconia with and without Yttria-Gradient" Materials 16, no. 1: 41. https://doi.org/10.3390/ma16010041
APA StyleCho, M. -H., & Seol, H. -J. (2023). Optical Properties, Microstructure, and Phase Fraction of Multi-Layered Monolithic Zirconia with and without Yttria-Gradient. Materials, 16(1), 41. https://doi.org/10.3390/ma16010041