Figure 1.
Locality near Hrabyně-Josefovice and bridge 11-134G (source: mapy.cz).
Figure 1.
Locality near Hrabyně-Josefovice and bridge 11-134G (source: mapy.cz).
Figure 2.
Locality near Hrabyně–Josefovice and bridge 11-134G.
Figure 2.
Locality near Hrabyně–Josefovice and bridge 11-134G.
Figure 3.
Typical stand for experimental measurement of deposition chloride ions.
Figure 3.
Typical stand for experimental measurement of deposition chloride ions.
Figure 4.
Vertical dry plate method and wet candle method. (a) Dependence of vertical dry plate method values and 95% confidence interval (grey area) on wet candle method values; (b) Q-Q plot.
Figure 4.
Vertical dry plate method and wet candle method. (a) Dependence of vertical dry plate method values and 95% confidence interval (grey area) on wet candle method values; (b) Q-Q plot.
Figure 5.
Wet candle method and horizontal dry plate method. (a) Dependence of horizontal dry plate method values and 95% confidence interval (grey area) on wet candle method values; (b) Q-Q plot.
Figure 5.
Wet candle method and horizontal dry plate method. (a) Dependence of horizontal dry plate method values and 95% confidence interval (grey area) on wet candle method values; (b) Q-Q plot.
Figure 6.
Horizontal dry plate method and vertical dry plate method. (a) Dependence of horizontal dry plate method values on and 95% confidence interval (grey area) vertical dry plate method values; (b) Q-Q plot.
Figure 6.
Horizontal dry plate method and vertical dry plate method. (a) Dependence of horizontal dry plate method values on and 95% confidence interval (grey area) vertical dry plate method values; (b) Q-Q plot.
Figure 7.
Graphical representation of the measured and calculated values of deposition of chloride ions (mg/m2day).
Figure 7.
Graphical representation of the measured and calculated values of deposition of chloride ions (mg/m2day).
Figure 8.
Appearance of horizontal corrosion coupons on stands—50×, 100× and 200× magnification. (a–c) The whole corrosion coupons; (d–f) 50× magnification of corrosion coupon surface; (g–i) 100× magnification of corrosion coupon surface; (j–l) 200× magnification of corrosion coupon surface.
Figure 8.
Appearance of horizontal corrosion coupons on stands—50×, 100× and 200× magnification. (a–c) The whole corrosion coupons; (d–f) 50× magnification of corrosion coupon surface; (g–i) 100× magnification of corrosion coupon surface; (j–l) 200× magnification of corrosion coupon surface.
Figure 9.
Appearance of vertical corrosion coupons on stands—50×, 100× and 200× magnification. (a,b) The whole corrosion coupons; (c,d) 50× magnification of corrosion coupon surface; (e,f) 100× magnification of corrosion coupon surface; (g,h) 200× magnification of corrosion coupon surface.
Figure 9.
Appearance of vertical corrosion coupons on stands—50×, 100× and 200× magnification. (a,b) The whole corrosion coupons; (c,d) 50× magnification of corrosion coupon surface; (e,f) 100× magnification of corrosion coupon surface; (g,h) 200× magnification of corrosion coupon surface.
Figure 10.
Thickness of corrosion products.
Figure 10.
Thickness of corrosion products.
Figure 11.
Schematic of the colour spectrum L, a, b of the CIELab system [
31] (Photo courtesy of Konica Minolta, Inc. All rights reserved).
Figure 11.
Schematic of the colour spectrum L, a, b of the CIELab system [
31] (Photo courtesy of Konica Minolta, Inc. All rights reserved).
Figure 12.
Scotch tape test (area 70 × 70 mm). (a,c,e) Scotch tape test—horizontal orientation of corrosion coupons from stand B1, B3 and B5 (b,d) Scotch tape test—vertical orientation of corrosion coupons from stand B3 and B5.
Figure 12.
Scotch tape test (area 70 × 70 mm). (a,c,e) Scotch tape test—horizontal orientation of corrosion coupons from stand B1, B3 and B5 (b,d) Scotch tape test—vertical orientation of corrosion coupons from stand B3 and B5.
Figure 13.
Percentage of marks from Scotch tape test (20× magnification). (a,c,e) Percentage of marks from scotch tape test—horizontal orientation of corrosion coupons from stand B1, B3 and B5 (b,d) Percentage of marks from scotch tape test—vertical orientation of corrosion coupons from stand B3 and B5.
Figure 13.
Percentage of marks from Scotch tape test (20× magnification). (a,c,e) Percentage of marks from scotch tape test—horizontal orientation of corrosion coupons from stand B1, B3 and B5 (b,d) Percentage of marks from scotch tape test—vertical orientation of corrosion coupons from stand B3 and B5.
Figure 14.
Average corrosion loss after 1 year of exposure.
Figure 14.
Average corrosion loss after 1 year of exposure.
Figure 15.
Distance between the position of the corrosion coupons and the CHMI measuring stations (source: mapy.cz).
Figure 15.
Distance between the position of the corrosion coupons and the CHMI measuring stations (source: mapy.cz).
Figure 16.
Depth of the pits.
Figure 16.
Depth of the pits.
Figure 17.
Diameter of the pits.
Figure 17.
Diameter of the pits.
Figure 18.
(a–l) Structure of the steel surfaces under the corrosion layer—horizontal exposure.
Figure 18.
(a–l) Structure of the steel surfaces under the corrosion layer—horizontal exposure.
Figure 19.
(a–h) Structure of the steel surfaces under the corrosion layer—vertical exposure.
Figure 19.
(a–h) Structure of the steel surfaces under the corrosion layer—vertical exposure.
Table 1.
Distance of stands from the guide strip of the road.
Table 1.
Distance of stands from the guide strip of the road.
Stand | 0 | 1 | 2 | 3 | 4 | 5 |
---|
Distance (m) | 5 | 7 | 20 | 45 | 80 | 180 |
Table 2.
Average monthly value of deposition chloride ions (mg/m2day).
Table 2.
Average monthly value of deposition chloride ions (mg/m2day).
Temperature (°C) | 4.8 | 0.4 | −0.1 | −0.7 | 3.7 | 6.4 | 12.2 | 19.4 | 20.4 | 17.3 | 14.6 | 9.1 | 4.8 | 0.4 |
Relative humidity (%) | 82 | 83 | 83 | 80 | 72 | 70 | 69 | 66 | 70 | 75 | 75 | 72 | 82 | 83 |
New snow (cm) | 25 | 8 | 20 | 20 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 8 |
Rainfall (mm) | 42.3 | 22.5 | 40.1 | 41.0 | 26.4 | 64.8 | 110.3 | 72.9 | 67.8 | 172.9 | 31.3 | 20.1 | 50.2 | 35.7 |
Days of exposure | 30 | 32 | 31 | 24 | 30 | 29 | 31 | 31 | 33 | 31 | 31 | 28 | 31 | 34 |
Position | Distance | 11/20 | 12/20 | 1/21 | 2/21 | 3/21 | 4/21 | 5/21 | 6/21 | 7/21 | 8/21 | 9/21 | 10/21 | 11/21 | 12/21 |
A-PH | 5 m | 3.65 | 7.92 | 29.68 | 25.96 | 4.09 | 1.27 | 2.03 | Miss. | 0.77 | 0.84 | 2.65 | 4.74 | 4.49 | 14.30 |
B-PH | 5 m | 3.48 | 6.85 | 30.21 | 13.02 | 5.15 | 1.49 | 1.60 | Miss. | 0.40 | 1.32 | 2.35 | 2.84 | 3.82 | 8.54 |
B1-C | 7 m | 7.38 | 15.36 | 33.08 | 82.37 | 16.29 | 11.58 | 7.70 | 3.28 | 5.56 | 9.37 | 12.35 | 1.89 | 16.01 | 30.00 |
B1-PH | 7 m | 7.11 | 8.78 | 13.84 | 24.07 | 10.04 | 1.70 | 1.05 | 2.54 | 0.40 | 0.74 | 2.27 | 3.86 | 4.20 | 20.93 |
B1-PV | 7 m | 6.98 | 7.11 | 48.01 | 21.57 | Miss. | 0.42 | 1.47 | 0.54 | 0.40 | 1.29 | 0.72 | 2.56 | 4.63 | 10.89 |
B2-C | 20 m | 6.78 | 10.31 | 15.82 | 66.18 | 13.14 | 12.97 | 9.10 | 3.70 | 5.50 | 9.91 | 7.35 | 4.87 | 9.82 | 13.26 |
B2-PH | 20 m | 6.58 | 7.48 | 7.72 | 10.82 | 7.17 | 0.75 | 1.16 | 1.01 | 0.40 | 0.40 | 1.00 | 2.44 | 4.03 | 14.69 |
B2-PV | 20 m | 6.81 | 6.55 | 11.31 | 10.22 | 3.32 | 0.42 | 0.40 | 0.40 | 0.40 | 1.28 | 1.10 | 2.50 | 1.27 | 6.96 |
B3-C | 45 m | 6.22 | 8.22 | 9.26 | 49.33 | 8.39 | 13.38 | 8.09 | 4.99 | 5.08 | 8.38 | 9.79 | Miss. | Miss. | 11.20 |
B3-PH | 45 m | 3.58 | 7.11 | 4.17 | 9.58 | 3.83 | 0.51 | 0.49 | 1.13 | 1.28 | 0.67 | 1.22 | 3.26 | 2.03 | 6.46 |
B3-PV | 45 m | 5.48 | 5.45 | 6.58 | 6.72 | 2.04 | 0.46 | 0.40 | 0.69 | 0.40 | 1.22 | 0.94 | 2.29 | 1.74 | 2.12 |
B4-C | 80 m | 4.15 | 5.48 | 13.58 | 30.00 | 6.72 | 8.06 | 9.25 | 4.10 | 5.32 | 4.77 | 7.31 | 4.96 | 3.93 | 15.73 |
B4-PH | 80 m | 4.36 | 4.44 | 2.53 | 4.46 | 2.72 | 0.92 | 0.40 | 2.55 | 0.96 | 1.07 | 0.86 | 2.64 | 1.45 | 2.26 |
B4-PV | 80 m | 4.58 | 3.26 | 4.84 | 6.68 | 2.85 | 1.58 | 0.40 | 1.33 | 0.40 | 0.84 | 1.23 | 1.42 | 1.19 | 1.80 |
B5-C | 180 m | 4.88 | 5.11 | 3.84 | 5.72 | 6.11 | 14.26 | 8.77 | 4.58 | 7.52 | 8.47 | 7.58 | 0.88 | 6.17 | 8.68 |
B5-PH | 180 m | 4.58 | 4.01 | 5.78 | 4.36 | 0.96 | 0.42 | 0.94 | 2.27 | 1.02 | 0.85 | 1.21 | 1.69 | 2.01 | 0.97 |
B5-PV | 180 m | 4.32 | 3.98 | 6.21 | 5.40 | 1.26 | 1.39 | 0.40 | 1.04 | 0.87 | 1.11 | 1.15 | 1.64 | 0.84 | 0.62 |
Table 3.
Descriptive statistic using JASP.
Table 3.
Descriptive statistic using JASP.
| Temperature | Distance | C | PH | PV |
---|
Valid | 98 | 98 | 68 | 96 | 68 |
Missing | 0 | 0 | 30 | 2 | 30 |
Mean | 8.050 | 48.857 | 11.753 | 4.778 | 3.098 |
Std. Deviation | 7.263 | 59.604 | 13.455 | 6.072 | 3.582 |
Skewness | 0.429 | 1.405 | 3.649 | 2.608 | 2.588 |
Std. Error of Skewness | 0.244 | 0.244 | 0.291 | 0.246 | 0.291 |
Kurtosis | −1.246 | 0.650 | 14.863 | 7.234 | 9.754 |
Std. Error of Kurtosis | 0.483 | 0.483 | 0.574 | 0.488 | 0.574 |
Shapiro–Wilk | 0.884 | 0.712 | 0.553 | 0.669 | 0.719 |
p-value of Shapiro–Wilk | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Minimum | −0.700 | 5.000 | 0.880 | 0.400 | 0.400 |
Maximum | 20.400 | 180.000 | 82.370 | 30.210 | 21.570 |
Table 4.
Correlation analysis using JASP.
Table 4.
Correlation analysis using JASP.
| | | n | Spearman’s Rho | p |
---|
Temperature | - | Distance | 98 | 0 | 1 |
| - | C | 68 | −0.493 | <0.001 |
| - | PH | 96 | −0.782 | <0.001 |
| - | PV | 68 | −0.779 | <0.001 |
Distance | - | C | 68 | −0.365 | 0.002 |
| - | PH | 96 | −0.293 | 0.004 |
| - | PV | 68 | −0.136 | 0.27 |
C | - | PH | 68 | 0.273 | 0.024 |
| - | PV | 66 | 0.313 | 0.011 |
PH | - | PV | 68 | 0.838 | <0.001 |
Table 5.
Vertical dry plate method and wet candle method—model.
Table 5.
Vertical dry plate method and wet candle method—model.
| Durbin–Watson |
---|
Model | R | R2 | Adjusted R2 | RMSE | Autocorrelation | Statistic | p |
---|
H₀ | 0 | 0 | 0 | 13.385 | 0.096 | 1.806 | 0.428 |
H₁ | 0.732 | 0.536 | 0.529 | 9.184 | 0.045 | 1.868 | 0.55 |
Table 6.
Vertical dry plate method and wet candle method—ANOVA.
Table 6.
Vertical dry plate method and wet candle method—ANOVA.
Model | | Sum of Squares | df | Mean Square | F | p |
---|
H₁ | Regression | 6246.871 | 1 | 6246.871 | 74.069 | <0.001 |
| Residual | 5397.7 | 64 | 84.339 | | |
| Total | 11,644.572 | 65 | | | |
Table 7.
Vertical dry plate method and wet candle method—coefficient of linear regression analysi.
Table 7.
Vertical dry plate method and wet candle method—coefficient of linear regression analysi.
| 95% CI |
---|
Model | | Unstandardized | Standard Error | Standardized | t | p | Lower | Upper |
---|
H₀ | (Intercept) | 11.361 | 1.648 | | 6.896 | <0.001 | 8.071 | 14.651 |
H₁ | (Intercept) | 2.908 | 1.498 | | 1.942 | 0.057 | −0.084 | 5.9 |
| PV | 2.7 | 0.314 | 0.732 | 8.606 | <0.001 | 2.073 | 3.326 |
Table 8.
Vertical dry plate method and wet candle method—statistic of residuals.
Table 8.
Vertical dry plate method and wet candle method—statistic of residuals.
| Minimum | Maximum | Mean | SD | N |
---|
Predicted Value | 3.988 | 61.141 | 11.361 | 9.803 | 66 |
Residual | −17.622 | 35.681 | −2.32 × 10−16 | 9.113 | 66 |
Std. Predicted Value | −0.752 | 5.078 | 4.71 × 10−17 | 1 | 66 |
Std. Residual | −2.015 | 4.037 | 0.011 | 1.04 | 66 |
Table 9.
Wet candle method and horizontal dry plate method—model.
Table 9.
Wet candle method and horizontal dry plate method—model.
| Durbin–Watson |
---|
Model | R | R2 | Adjusted R2 | RMSE | Autocorrelation | Statistic | p |
---|
H₀ | 0 | 0 | 0 | 13.455 | 0.23 | 1.539 | 0.053 |
H₁ | 0.712 | 0.507 | 0.499 | 9.522 | −0.012 | 2.002 | 0.953 |
Table 10.
Wet candle method and horizontal dry plate method—ANOVA.
Table 10.
Wet candle method and horizontal dry plate method—ANOVA.
Model | | Sum of Squares | df | Mean Square | F | p |
---|
H₁ | Regression | 6146.569 | 1 | 6146.569 | 67.798 | <0.001 |
| Residual | 5983.574 | 66 | 90.66 | | |
| Total | 12,130.144 | 67 | | | |
Table 11.
Wet candle method and horizontal dry plate method—coefficient of linear regression analysis.
Table 11.
Wet candle method and horizontal dry plate method—coefficient of linear regression analysis.
| 95% CI |
---|
Model | | Unstandardized | Standard Error | Standardized | t | p | Lower | Upper |
---|
H₀ | (Intercept) | 11.753 | 1.632 | | 7.203 | <0.001 | 8.496 | 15.01 |
H₁ | (Intercept) | 3.505 | 1.529 | | 2.293 | 0.025 | 0.453 | 6.557 |
| PH | 2.078 | 0.252 | 0.712 | 8.234 | <0.001 | 1.574 | 2.582 |
Table 12.
Wet candle method and horizontal dry plate method—statistic of residuals.
Table 12.
Wet candle method and horizontal dry plate method—statistic of residuals.
| Minimum | Maximum | Mean | SD | N |
---|
Predicted Value | 4.336 | 53.523 | 11.753 | 9.578 | 68 |
Residual | −20.771 | 40.191 | 1.21 × 10−16 | 9.45 | 68 |
Std. Predicted Value | −0.774 | 4.361 | 8.17 × 10−17 | 1 | 68 |
Std. Residual | −2.294 | 4.325 | 0.005 | 1.043 | 68 |
Table 13.
Horizontal dry plate method and wet candle method—model.
Table 13.
Horizontal dry plate method and wet candle method—model.
| Durbin–Watson |
---|
Model | R | R2 | Adjusted R2 | RMSE | Autocorrelation | Statistic | p |
---|
H₀ | 0 | 0 | 0 | 4.385 | 0.324 | 1.337 | 0.005 |
H₁ | 0.897 | 0.804 | 0.801 | 1.956 | −0.096 | 2.188 | 0.468 |
Table 14.
Horizontal dry plate method and wet candle method—ANOVA.
Table 14.
Horizontal dry plate method and wet candle method—ANOVA.
Model | | Sum of Squares | df | Mean Square | F | p |
---|
H₁ | Regression | 1035.899 | 1 | 1035.899 | 270.853 | <0.001 |
| Residual | 252.423 | 66 | 3.825 | | |
| Total | 1288.322 | 67 | | | |
Table 15.
Horizontal dry plate method and wet candle method—coefficient of linear regression analysis.
Table 15.
Horizontal dry plate method and wet candle method—coefficient of linear regression analysis.
| 95% CI |
---|
Model | | Unstandardized | Standard Error | Standardized | t | p | Lower | Upper |
---|
H₀ | (Intercept) | 3.696 | 0.532 | | 6.95 | <0.001 | 2.634 | 4.757 |
H₁ | (Intercept) | 0.295 | 0.315 | | 0.937 | 0.352 | −0.333 | 0.923 |
| PV | 1.098 | 0.067 | 0.897 | 16.458 | <0.001 | 0.965 | 1.231 |
Table 16.
Horizontal dry plate method and wet candle method—statistic of residuals.
Table 16.
Horizontal dry plate method and wet candle method—statistic of residuals.
| Minimum | Maximum | Mean | SD | N |
---|
Predicted Value | 0.734 | 23.973 | 3.696 | 3.932 | 68 |
Residual | −4.99 | 8.681 | −1.20 × 10−16 | 1.941 | 68 |
Std. Predicted Value | −0.753 | 5.157 | −2.70 × 10−17 | 1 | 68 |
Std. Residual | −2.679 | 4.641 | 0.000916 | 1.019 | 68 |
Table 17.
Measured values for determining the minimum model value.
Table 17.
Measured values for determining the minimum model value.
| 3/21 | 4/21 | 5/21 | 6/21 | 7/21 | 8/21 | 9/21 | 10/21 |
---|
B1-PV | Miss. | 0.42 | 1.47 | 0.54 | 0.40 | 1.29 | 0.72 | 2.56 |
B2-PV | 3.32 | 0.42 | 0.40 | 0.40 | 0.40 | 1.28 | 1.10 | 2.50 |
B3-PV | 2.04 | 0.46 | 0.40 | 0.69 | 0.40 | 1.22 | 0.94 | 2.29 |
B4-PV | 2.85 | 1.58 | 0.40 | 1.33 | 0.40 | 0.84 | 1.23 | 1.42 |
B5-PV | 1.26 | 1.39 | 0.40 | 1.04 | 0.87 | 1.11 | 1.15 | 1.64 |
Table 18.
Variables for non-linear regression equation.
Table 18.
Variables for non-linear regression equation.
Variables |
---|
a | −2.93 |
b | −0.53 |
x | −109.27 |
y | 36.42 |
const | 7.26 |
min | 1.14 |
SSR | 215.77 |
Table 19.
Minimum and maximum value of residuum.
Table 19.
Minimum and maximum value of residuum.
Table 20.
Minimum and maximum value of measured and calculated value.
Table 20.
Minimum and maximum value of measured and calculated value.
| Measured | Calculation |
---|
min | 0.40 | 1.14 |
max | 21.57 | 17.268 |
Table 21.
Calculated value of deposition of chloride ions (mg/m2day).
Table 21.
Calculated value of deposition of chloride ions (mg/m2day).
| 11/20 | 12/20 | 01/21 | 02/21 | 03/21 | 04/21 | 05/21 | 06/21 | 07/21 | 08/21 | 09/21 | 10/21 | 11/21 | 12/21 |
---|
Temperature (°C) | 4.8 | 0.4 | −0.1 | −0.7 | 3.7 | 6.4 | 12.2 | 19.4 | 20.4 | 17.3 | 14.6 | 9.1 | 4.8 | 0.4 |
Calculated 7 m | 14.32 | 14.32 | 14.32 | 14.32 | 14.32 | 14.32 | 14.32 | 14.32 | 14.32 | 14.32 | 14.32 | 14.32 | 14.32 | 14.32 |
Calculated 20 m | 8.79 | 8.79 | 8.79 | 8.79 | 8.79 | 8.79 | 8.79 | 8.79 | 8.79 | 8.79 | 8.79 | 8.79 | 8.79 | 8.79 |
Calculated 45 m | 6.19 | 6.19 | 6.19 | 6.19 | 6.19 | 6.19 | 6.19 | 6.19 | 6.19 | 6.19 | 6.19 | 6.19 | 6.19 | 6.19 |
Calculated 80 m | 4.93 | 4.93 | 4.93 | 4.93 | 4.93 | 4.93 | 4.93 | 4.93 | 4.93 | 4.93 | 4.93 | 4.93 | 4.93 | 4.93 |
Calculated 180 m | 3.69 | 3.69 | 3.69 | 3.69 | 3.69 | 3.69 | 3.69 | 3.69 | 3.69 | 3.69 | 3.69 | 3.69 | 3.69 | 3.69 |
Table 22.
Thickness of corrosion products.
Table 22.
Thickness of corrosion products.
| | | Thickness (µm) | |
---|
Stand/Exposition | n | Mean | Min | Max | sx |
---|
B1 | horizontal | 30 | 73.7 | 40 | 110 | 15.6 |
B3 | horizontal | 30 | 55.9 | 35 | 82 | 13.5 |
| vertical | 30 | 61.2 | 40 | 90 | 10.3 |
B5 | horizontal | 30 | 56.9 | 34 | 80 | 12.5 |
| vertical | 30 | 51.4 | 34 | 78 | 11.0 |
Table 23.
Colorimetric parameters of exposed samples.
Table 23.
Colorimetric parameters of exposed samples.
Stand/Exposition | Coordinates CIELab |
---|
L | a | b |
---|
B1 | horizontal | 30.43 | 12.08 | 16.33 |
B3 | horizontal | 27.75 | 11.26 | 12.71 |
| vertical | 34.04 | 6.02 | 3.75 |
B5 | horizontal | 26.10 | 12.75 | 13.55 |
| vertical | 33.63 | 8.14 | 6.90 |
Table 24.
Average corrosion increment and loss after 1 year of exposure.
Table 24.
Average corrosion increment and loss after 1 year of exposure.
Stand/Exposition | Average Corrosion Gain | Average Corrosion Loss |
---|
(g.m−2) | (µm) | (g.m−2) | (µm) |
---|
B1 | horizontal | 89.95 | 73.7 | 155.78 | 19.8 |
B3 | horizontal | 68.93 | 55.9 | 121.92 | 15.5 |
| vertical | 73.83 | 61.2 | 127.90 | 16.3 |
B5 | horizontal | 58.98 | 56.9 | 120.81 | 15.4 |
| vertical | 48.33 | 51.4 | 89.99 | 11.4 |
Table 25.
Average concentration of SO
2 in 2021 [
35] and value for calculation r
corr.
Table 25.
Average concentration of SO
2 in 2021 [
35] and value for calculation r
corr.
Station | Average Concentration SO2 Pc (µg/m3) | Average Concentration SO2 Pd (mg/m2) |
---|
Ostrava, Mariánské Hory | <11.00 | <8.80 |
Ostrava, Hošťálkovice | <11.00 | <8.80 |
Value for calculation | 3.00 | 2.40 |
Table 26.
Weighted arithmetic means of RH and T, calculated fSt.
Table 26.
Weighted arithmetic means of RH and T, calculated fSt.
RH (%) | T (°C) | fSt |
---|
75.88 | 8.20 | −0.27 |
Table 27.
Weighted arithmetic means of measuring by wet candle method for location B1, B3 and B5.
Table 27.
Weighted arithmetic means of measuring by wet candle method for location B1, B3 and B5.
Sd,B1-C (mg/m2day) | Sd,B3-C (mg/m2day) | Sd,B5-C (mg/m2day) |
---|
17.15 | 9.57 | 6.65 |
Table 28.
Normative corrosivity estimation based on calculated first-year corrosion loses.
Table 28.
Normative corrosivity estimation based on calculated first-year corrosion loses.
rcorr,B1 (µm/Year) | rcorr,B3 (µm/Year) | rcorr,B5 (µm/Year) |
---|
19.80 | 16.74 | 15.32 |
Table 29.
Depth of the pits, diameter of the pits, average number of pits.
Table 29.
Depth of the pits, diameter of the pits, average number of pits.
Stand/Exposition | Depth of the Pits (µm) | Diameter of the Pits (µm) | Average Number of Pits (Pits/mm2) |
---|
average | min. | max. | average | min. | max. |
---|
B1 | horizontal | 42 | 17 | 79 | 141 | 81 | 330 | 23.5 |
B3 | horizontal | 27 | 7 | 52 | 105 | 74 | 163 | 21.5 |
| vertical | 34 | 13 | 72 | 128 | 74 | 225 | 19.3 |
B5 | horizontal | 25 | 7 | 50 | 103 | 75 | 147 | 21.7 |
| vertical | 31 | 2 | 86 | 126 | 62 | 235 | 19.4 |
Table 30.
Elemental analysis.
Table 30.
Elemental analysis.
| Content (%) |
---|
Specimen | Na | Mg | Al | Si | P | S | Cl | K | Ca | Ti | Cr | Mn | Fe | Co | Ni | Cu | Zn |
---|
B1-H | 0.10 | 0.04 | 0.21 | 0.91 | 0.09 | 0.22 | 0.23 | 0.05 | 0.07 | 0.04 | 0.23 | 0.44 | 96.66 | 0.17 | 0.25 | 0.12 | 0.19 |
B3-H | 0.10 | 0.05 | 0.21 | 0.91 | 0.07 | 0.36 | 0.21 | 0.05 | 0.06 | 0.03 | 0.12 | 0.38 | 96.71 | 0.18 | 0.16 | 0.08 | 0.32 |
B3-V | 0.18 | 0.02 | 0.08 | 0.31 | 0.04 | 0.40 | 0.31 | 0.02 | 0.02 | - | 0.20 | 0.46 | 97.49 | 0.15 | 0.22 | 0.09 | 0.03 |
B5-H | 0.02 | 0.07 | 0.32 | 1.36 | 0.09 | 0.33 | 0.07 | 0.08 | 0.09 | 0.04 | 0.15 | 0.44 | 96.09 | 0.13 | 0.21 | 0.07 | 0.47 |
B5-V | 0.09 | 0.02 | 0.04 | 0.33 | 0.05 | 0.46 | 0.16 | 0.03 | 0.02 | - | 0.29 | 0.51 | 97.49 | 0.15 | 0.14 | 0.16 | 0.06 |
Table 31.
X-ray diffraction analysis.
Table 31.
X-ray diffraction analysis.
Specimen | Chemical Compound | Mineral | Chemical Formula | Content (%) | PAIα | PAIβ |
---|
B1-H | hydroxide—ferric oxide | lepidocrocite | γ-FeO(OH) | 80 | 0.18 | 0.04 |
hydroxide—ferric oxide | goethite | α-FeO(OH) | 18 |
silicone dioxide | quartz | SiO2 | 1 |
hydroxide—ferric oxide | akaganeite | β-FeO(OH) | 1 |
B3-H | hydroxide—ferric oxide | lepidocrocite | γ-FeO(OH) | 80 | 0.22 | 0.03 |
hydroxide—ferric oxide | goethite | α-FeO(OH) | 20 |
silicone dioxide | quartz | SiO2 | minor |
hydroxide—ferric oxide | akaganeite | β-FeO(OH) | minor |
B3-V | hydroxide—ferric oxide | lepidocrocite | γ-FeO(OH) | 68 | 0.32 | 0.27 |
hydroxide—ferric oxide | goethite | α-FeO(OH) | 30 |
hydroxide—ferric oxide | akaganeite | β-FeO(OH) | 2 |
B5-H | hydroxide—ferric oxide | lepidocrocite | γ-FeO(OH) | 83 | 0.19 | 0.01 |
hydroxide—ferric oxide | goethite | α-FeO(OH) | 17 |
silicone dioxide | quartz | SiO2 | minor |
hydroxide—ferric oxide | akaganeite | β-FeO(OH) | minor |
B5-V | hydroxide—ferric oxide | lepidocrocite | γ-FeO(OH) | 65 | 0.46 | 0.03 |
hydroxide—ferric oxide | goethite | α-FeO(OH) | 35 |
hydroxide—ferric oxide | akaganeite | β-FeO(OH) | minor |