Applicability of Compost and Mineral Materials for Reducing the Effect of Diesel Oil on Trace Element Content in Soil
Abstract
:1. Introduction
2. Material and Methods
2.1. Vegetation Research Methodology
2.2. Methodology of Laboratory Analyses
2.3. Methodology of Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adhikari, K.; Hertemink, A. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; de Groot, R.; Lomas, P.L.; Montes, C. The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecol. Econ. 2010, 69, 1209–1218. [Google Scholar] [CrossRef]
- Robinson, D.A.; Panagos, P.; Borrelli, P.; Jones, A.; Montanarella, L.; Tye, A.; Obst, C.G. Soil natural capital in Europe: A framework for state and change assessment. Sci. Rep. 2017, 7, 6706. [Google Scholar] [CrossRef] [PubMed]
- Schoonover, J.E.; Crim, J.F. An introduction to soil concepts and the role of soils in watershed management. J. Contemp. Water Res. Educ. 2015, 154, 21–47. [Google Scholar] [CrossRef]
- Dazzi, C.; Papa, G.L. A new definition of soil to promote soil awareness, sustainability, security and governance. Int. Soil Water Conserv. Res. 2022, 10, 99–108. [Google Scholar] [CrossRef]
- Stockman, U.; Minasny, B.; McBratney, A.B. How fast does soil grow? Geoderma 2014, 216, 48–61. [Google Scholar] [CrossRef]
- Kwiatkowska-Malina, J. Functions of organic matter in polluted soils: The effect of organic amendments on phytoavailability of heavy metals. Appl. Soil Ecol. 2018, 123, 542–545. [Google Scholar] [CrossRef]
- Gomiero, T. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef]
- Cocârţă, D.M.; Stoian, M.A.; Karademir, A. crude oil contaminated sites: Evaluation by using risk assessment approach. Sustainability 2017, 9, 1365. [Google Scholar] [CrossRef]
- Chayka, O.; Petrushka, I.; Ruda, M.; Paranyak, N.; Matskiv, O. The minimization of impact of oil pollution on soils in the area of railways using glauconite. J. Water Land Dev. 2021, 49, 79–84. [Google Scholar] [CrossRef]
- Liu, C.; Kwon, J.-H.; Prabhu, S.M.; Ha, G.-S.; Khan, M.A.; Park, Y.-K.; Jeon, B.-H. Efficiency of diesel-contaminated soil washing with different tween 80 surfactant concentrations, pH, and bentonite ratios. Environ. Res. 2022, 214, 113830. [Google Scholar] [CrossRef] [PubMed]
- Rakowska, J. Remediation of diesel-contaminated soil enhanced with firefighting foam application. Sci. Rep. 2020, 10, 8824. [Google Scholar] [CrossRef] [PubMed]
- Hu, M. Environmental behavior of petroleum in soil and its harmfulness analysis. IOP Conf. Ser. Earth Environ. Sci. 2020, 450, 012100. [Google Scholar] [CrossRef]
- Galitskaya, I.V.; Pozdnyakova, I.A. The pollution of groundwater and unsaturated zone rocks by oil products and PAH in urban areas. Water Resour. 2012, 39, 784–789. [Google Scholar] [CrossRef]
- Sui, X.; Wang, X.; Li, Y.; Ji, H. Remediation of petroleum-contaminated soils with microbial and microbial combined methods: Advances, mechanisms, and challenges. Sustainability 2021, 13, 9267. [Google Scholar] [CrossRef]
- Hazaimeh, M.; Almansoory, A.F.; Mutalib, S.A.; Kanaan, B. Effects of plant density on the bioremediation of soils contaminated with polyaromatic hydrocarbons. Emerg. Contam. 2019, 5, 123–127. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J. Response of Avena sativa L. and the soil microbiota to the contamination of soil with Shell diesel oil. Plant Soil Environ. 2018, 64, 102–107. [Google Scholar] [CrossRef]
- Okoro, E.E.; Okafor, I.S.; Sanni, S.E.; Obomanu, T.; Olugbenga, T.S.; Igbinedion, P. In-situ remediation of petroleum-contaminated soil by application of plant-based surfactants toward preventing environmental degradation. Int. J. Phytoremediation 2021, 23, 1013–1020. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Sivitskaya, V. Effect of different substances on some properties of soil contaminated with heating oil. J. Ecol. Eng. 2015, 16, 62–66. [Google Scholar] [CrossRef]
- Gospodarek, J.; Rusin, M.; Kandziora-Ciupa, M.; Nadgórska-Socha, A. The subsequent effects of soil pollution by petroleum products and its bioremediation on the antioxidant response and content of elements in Vicia faba Plants. Energies 2021, 14, 7748. [Google Scholar] [CrossRef]
- Ujowundu, C.O.; Kalu, F.N.; Nwaoguikpe, R.N.; Kalu, O.I.; Ihejirika, C.E.; Nwosunjoku, E.C.; Okechukwu, R.I. Biochemical and physical characterization of diesel petroleum contaminated soil in southeastern Nigeria. Res. J. Chem. Sci. Ences. 2011, 1, 57–62. [Google Scholar]
- Santos-Echeandia, J.; Prego, R.; Cobelo-Garcia, A. Influence of the heavy fuel spill from the Prestige tanker wreckage in the overlying seawater column levels of copper, nickel and vanadium (NE Atlantic ocean). J. Mar. Syst. 2008, 72, 350–357. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Sivitskaya, V. Changes in the content of organic carbon and available forms of macronutrients in soil under the influence of soil contamination with fuel oil and application of different substances. J. Elem. 2012, 17, 139–148. [Google Scholar] [CrossRef]
- Dib, D.; Ahmed, D.S.A. Influence of diesel fuel contamination on Xanthium strumarium L. germination and growth. Int. J. Phytoremediation 2019, 22, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Hawrot-Paw, M.; Koniuszy, A.; Zając, G.; Szyszlak-Bargłowicz, J. Ecotoxicity of soil contaminated with diesel fuel and biodiesel. Sci. Rep. 2020, 10, 16436. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Wyszkowska, J. Effect of enzymatic activity of diesel oil contaminated soil on the chemical composition of oat (Avena sativa L.) and maize (Zea mays L.). Plant Soil Environ. 2005, 51, 360–367. [Google Scholar] [CrossRef]
- Haider, F.U.; Ejaz, M.; Cheema, S.A.; Khan, M.I.; Zhao, B.; Liqun, C.; Salim, M.A.; Naveed, M.; Khan, N.; Núñez-Delgado, A.; et al. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environ Res. 2021, 197, 111031. [Google Scholar] [CrossRef]
- Mukome, F.N.D.; Buelow, M.C.; Shang, J.S.; Peng, J.; Rodriguez, M.; Mackay, D.M.; Pignatello, J.P.; Sihota, N.; Hoelen, T.; Parikh, S.J. Biochar amendment as a remediation strategy for surface soils impacted by crude oil. Environ. Pollut. 2020, 265, 115006. [Google Scholar] [CrossRef]
- Ehiagbonare, J.E.; Obayuwana, S.; Aborisade, W.T.; Asogwa, I. Effect of unspent and spent diesel fuel on two agricultural crop plants: Arachis hypogea and Zea mays. Sci. Res. Essays 2011, 6, 2296–2301. Available online: https://academicjournals.org/article/article1380704923_Ehiagbonare%20et%20al.pdf (accessed on 18 January 2023).
- Fatokun, K.; Zharare, G.E. Influence of diesel contamination in soil on growth and dry matter partitioning of Lactuca sativa and Ipomoea batatas. J. Environ. Biol. 2015, 36, 1205–1213. [Google Scholar]
- Lim, M.W.; Lau, E.V.; Poh, P.E. A comprehensive guide of remediation technologies for oil contaminated soil—Present works and future directions. Mar. Pollut. Bull. 2016, 109, 14–45. [Google Scholar] [CrossRef] [PubMed]
- Uyizeye, O.C.; Thiet, R.K.; Knorr, M.A. Effects of community-accessible biochar and compost on diesel-contaminated soil. Bioremediat. J. 2019, 23, 107–117. [Google Scholar] [CrossRef]
- Kim, K.R.; Park, J.S.; Kim, M.S.; Koo, N.; Lee, S.H.; Lee, J.S.; Lee, S.S.; Ok, Y.S.; Kim, J.-G. Changes in heavy metal phytoavailability by application of immobilizing agents and soil cover in the upland soil nearby abandoned mining area and subsequent metal uptake by red pepper. Korean J. Soil. Sci. Fert. 2010, 43, 864–871. Available online: http://www.koreascience.or.kr/article/JAKO201020842653016.pdf (accessed on 28 January 2023).
- Lwin, C.S.; Seo, B.-H.; Kim, H.-U.; Owens, G.; Kim, K.-R. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Sci. Plant Nutr. 2018, 64, 156–167. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Alpaslan, B.; Yukselen, M.A. Remediation of lead contaminated soils by stabilization/solidification. Water Air Soil Pollut. 2002, 133, 253–263. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Ziółkowska, A. Effect of petrol and diesel oil on content of organic carbon and mineral components in soil. Am. Eurasian J. Sustain. Agric. 2008, 2, 54–60. [Google Scholar]
- Kästner, M.; Miltner, A. Application of compost for effective bioremediation of organic contaminants and pollutants in soil. Appl. Microbiol. Biotechnol. 2016, 100, 3433–3449. [Google Scholar] [CrossRef]
- Muir, B.; Bajda, T. Organically modified zeolites in petroleum compounds spill cleanup—Production, efficiency, utilization. Fuel Process. Technol. 2016, 149, 153–162. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J. Remediation of soil contaminated with diesel oil. J. Elem. 2018, 23, 767–788. [Google Scholar] [CrossRef]
- Oraegbunam, C.; Okoye, P.I.; Ngobiri, N.C. The performance of an organo-modified natural bentonite in the adsorption of petroleum fractions. J. Environ. Pollut. Contr. 2020, 3, 1–5. [Google Scholar]
- Yu, H.; Xiao, H.; Wang, D. Effects of soil properties and biosurfactant on the behavior of PAHs in soil-water systems. Environ. Syst. Res. 2014, 3, 6. [Google Scholar] [CrossRef]
- Łyszczarz, S.; Lasota, J.; Błońska, E. Polycyclic aromatic hydrocarbons accumulation in soil horizons of different temperate forest stands. Land Degrad. Dev. 2022, 33, 945–959. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, N.; Xue, M.; Tao, S. Impact of soil organic matter on the distribution of polycyclic aromatic hydrocarbons (PAHs) in soils. Environ. Pollut. 2010, 158, 2170–2174. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Smreczak, B. The Impact of organic matter on polycyclic aromatic hydrocarbon (PAH) availability and persistence in soils. Molecules 2020, 25, 2470. [Google Scholar] [CrossRef]
- Banach-Szott, M.; Debska, B.; Rosa, E. Effect of soil pollution with polycyclic aromatic hydrocarbons on the properties of humic acids. J. Soils Sediments 2014, 14, 1169–1178. [Google Scholar] [CrossRef]
- Wu, G.; Kechavarzi, C.; Li, X.; Sui, H.; Pollard, S.J.; Coulon, F. Influence of mature compost amendment on total and bioavailable polycyclic aromatic hydrocarbons in contaminated soils. Chemosphere 2013, 90, 2240–2246. [Google Scholar] [CrossRef]
- Wu, M.; Guo, X.; Wu, J.; Chen, K. Effect of compost amendment and bioaugmentation on PAH degradation and microbial community shifting in petroleum-contaminated soil. Chemosphere 2020, 256, 126998. [Google Scholar] [CrossRef]
- Selim, K.A.; Rostom, M.; Youssef, M.A.; Abdel-Khalek, N.A.; Abdel Khalek, M.A.; Hassan El-Sayed, R.E. Surface modified bentonite mineral as a sorbent for Pb2+ and Zn2+ ions removal from aqueous solutions. Physicochem. Probl. Miner. Process. 2020, 56, 145–157. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Kordala, N. Trace element contents in petrol-contaminated soil following the application of compost and mineral materials. Materials 2022, 15, 5233. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; World Soil Resources Report; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 182. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 20 January 2023).
- Wyszkowski, M.; Kordala, N. Role of different material amendments in shaping the content of heavy metals in maize (Zea mays L.) on soil polluted with petrol. Materials 2022, 15, 2623. [Google Scholar] [CrossRef] [PubMed]
- US-EPA Method 3051A. Microwave Assisted Acid Digestion of Sediment, Sludges, Soils, and Oils; United States Environmental Protection Agency: Washington, DC, USA, 2007; pp. 1–30. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf (accessed on 24 January 2023).
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods for Analysis and Evaluation of Soil and Plant Properties; Institute of Environmental Protection: Warsaw, Poland, 1991; pp. 1–334. [Google Scholar]
- ISO 10390; Soil Quality—Determination of pH. International Organization for Standardization: Geneva, Switzerland, 2005.
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; p. 1224. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extractionsmethoden zur Phospor- und Kaliumbestimmung. Ann. R. Agric. Coll. Swed. 1960, 26, 199–215. [Google Scholar]
- Schlichting, E.; Blume, H.P.; Stahr, K. Bodenkundliches Praktikum. Pareys Studientexte 81; Blackwell Wissenschafts-Verlag: Berlin, Germany, 1995. [Google Scholar]
- TIBCO Software Inc. Statistica Version 13; Data Analysis Software System; Tibco Software Inc.: Palo Alto, CA, USA, 2021; Available online: http://statistica.io (accessed on 20 January 2023).
- Grujić, S.; Ristić, M.; Lausević, M. Heavy metals in petroleum-contaminated surface soils in Serbia. Ann. Chim. 2004, 94, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowski, M.; Sivitskaya, V. Changes in the content of some micronutrients in soil contaminated with heating oil after the application of different substances. J. Elem. 2014, 19, 243–252. [Google Scholar] [CrossRef]
- Agbogidi, O.M.; Mariere, A.E.; Ohwo, O.A. Metal concentration in plant tissues of Jatropha curcas L. grown in crude oil contaminated soil. J. Sustain. For. 2013, 32, 404–411. [Google Scholar] [CrossRef]
- Fu, X.W.; Wang, D.G.; Ren, X.H.; Cui, Z.J. Spatial distribution patterns and potential sources of heavy metals in soils of a crude oil-polluted region in China. Pedosphere 2014, 24, 508–515. [Google Scholar] [CrossRef]
- Cheraghi, M.; Sobhan, A.S.; Lorestani, B.; Merrikhpour, H.; Parvizimosaed, H. Biochemical and physical characterization of petroleum hydrocarbon contaminated soils in Tehran. J. Chem. Health Risks 2015, 5, 199–208. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Kucharski, M.; Kucharski, J. Implications of soil pollution with diesel oil and BP Petroleum with active technology for soil health. Int. J. Environ. Res. Public Health 2019, 16, 2474. [Google Scholar] [CrossRef]
- Bona, C.; de Rezende, I.M.; de Oliveira Santos, G.; de Souza, L.A. Effect of soil contaminated by diesel oil on the germination of seeds and the growth of Schinus terebinthifolius Raddi (Anacardiaceae) seedlings. Braz. Arch. Biol. Technol. 2011, 54, 1379–1387. [Google Scholar] [CrossRef]
- Rusin, M.; Gospodarek, J.; Barczyk, G.; Nagórska-Socha, A. Antioxidant responses of Triticum aestivum plants to petroleum-derived substances. Ecotoxicology 2018, 27, 1353–1367. [Google Scholar] [CrossRef]
- Jabbarov, Z.; Abdrakhmanov, T.; Pultova, A.; Kováčik, P.; Pirmatov, K. Change in the parameters of soils contaminated by oil and oil products. Agriculture (Polnohospodárstvo) 2019, 65, 88–98. [Google Scholar] [CrossRef]
- Kicińska, A.; Pomykała, R.; Izquierdo-Diaz, M. Changes in soil pH and mobility of heavy metals incontaminated soils. Eur. J. Soil Sci. 2022, 73, 13203. [Google Scholar] [CrossRef]
- Arroyo, S.; Rosano-Ortega, G.; Martínez-Gallegos, S.; Pérez-Armendariz, B.C.; Vega-Lebrún, A. Reduction of hydrocarbons in contaminated soil through paired sorption and advanced oxidation processes. Soil Security 2021, 4, 100013. [Google Scholar] [CrossRef]
- Księżopolska, A.; Pazur, M. Surface properties of bentonite and illite complexes with humus acids. Clay Miner. 2011, 46, 149–156. [Google Scholar] [CrossRef]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Maged, A.; Kharbish, S.; Ismael, I.S.; Bhatnagar, A. Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution. Environ. Sci. Pollut. Res. Int. 2020, 27, 32980–32997. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Kang, X.; Wang, L.; Lichtfouse, E.; Wang, C. Clay mineral adsorbents for heavy metal removal from wastewater: A review. Environ. Chem. Lett. 2019, 17, 629–654. [Google Scholar] [CrossRef]
- Borisover, M.; Davis, J.A. Adsorption of inorganic and organic solutes by clay minerals. Dev. Clay Sci. 2015, 6, 33–70. [Google Scholar] [CrossRef]
- Kumararaja, P.; Manjaiah, K.M.; Datta, S.C.; Sarkar, B. Remediation of metal contaminated soil by aluminium pillared bentonite: Synthesis, characterisation, equilibrium study and plant growth experiment. Appl. Clay Sci. 2017, 137, 115–122. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Kuzyakov, Y.; Stahr, K. Effect of clay minerals on extractability of heavy metals and sewage sludge mineralization in soil. Chem. Ecol. 2004, 20, 123–135. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Xu, Y.; Liang, X.; Wang, L. In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Appl. Clay Sci. 2015, 105–106, 200–206. [Google Scholar] [CrossRef]
- Chikwe, T.N.; Ekpo, R.E.; Okoye, I.P. Competitive adsorption of organic solvents using modified and unmodified calcium bentonite clay mineral. Chem. Int. 2018, 4, 230–239. [Google Scholar]
- Xu, L.; Xing, X.; Cui, H.; Zhou, J.; Zhou, J.; Peng, J.; Bai, J.; Zheng, X.; Ji, M. The combination of lime and plant species effects on trace metals (copper and cadmium) in soil exchangeable fractions and runoff in the Red Soil Region of China. Front. Environ. Sci. 2021, 9, 638324. [Google Scholar] [CrossRef]
- Vondráčková, S.; Hejcman, M.; Tlustoš, P.; Száková, J. Effect of quick lime and dolomite application on mobility of elements (Cd, Zn, Pb, As, Fe, and Mn) in contaminated soils. Pol. J. Environ. Stud. 2013, 22, 577–589. [Google Scholar]
- Kumarpandit, T.; Kumarnaik, S.; Patra, P.K.; Dey, N.; Patra, P.K.; Das, D.K. Influence of organic manure and lime on cadmium mobility in soil and uptake by spinach (Spinacia oleracea L.). Commun. Soil Sci. Plant Anal. 2017, 48, 357–369. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef]
- Shi, L.; Guo, Z.; Liang, F.; Xiao, X.; Peng, C.; Zeng, P.; Feng, W.; Ran, H. Effect of liming with various water regimes on both immobilization of cadmium and improvement of bacterial communities in contaminated paddy: A field experiment. Int. J. Environ. Res. Public Health 2019, 16, 498. [Google Scholar] [CrossRef]
- Bolan, N.S.; Adriano, D.C.; Mani, P.A.; Duraisamy, A. Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition. Plant Soil 2003, 251, 187–198. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Tan, F.; Chen, W.; Ou, L. Effects of soil type on trace element absorption and fruit quality of pepper. Front. Plant Sci. 2021, 12, 698796. [Google Scholar] [CrossRef]
- Jalali, M.; Najafi, S. Effect of pH on potentially toxic trace elements (Cd, Cu, Ni, and Zn) solubility in two native and spiked calcareous soils: Experimental and modeling. Commun. Soil Sci. Plant Anal. 2018, 49, 814–827. [Google Scholar] [CrossRef]
- Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.G.; Pogna, M. Mobility and bioavailability of HM and metalloids in the soil. J. Soil. Sci. Plant Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Liu, J. Effects of a one-time application of bentonite on soil enzymes in a semi-arid region. Can. J. Soil Sci. 2018, 98, 542–555. [Google Scholar] [CrossRef]
Material | Diesel Oil Dose (cm3 kg−1 d.m. of Soil) | Average | r | |||
---|---|---|---|---|---|---|
0 | 2.5 | 5 | 10 | |||
Cadmium (Cd) | ||||||
Without amendments | 0.212 ab | 0.198 ab | 0.198 ab | 0.252 a–c | 0.215 B | 0.741 ** |
Compost | 0.265 a–c | 0.360 cd | 0.216 ab | 0.360 cd | 0.300 A | 0.354 |
Bentonite | 0.194 ab | 0.540 e | 0.522 e | 0.504 e | 0.440 C | 0.616 * |
CaO | 0.141 a | 0.432 de | 0.450 de | 0.306 bc | 0.332 A | 0.315 |
Average | 0.203 B | 0.383 A | 0.347 A | 0.356 A | 0.322 | 0.591 * |
Lead (Pb) | ||||||
Without amendments | 15.63 a | 19.70 a | 17.70 a | 16.65 a | 17.42 A | −0.027 |
Compost | 33.00 cd | 33.28 cd | 32.93 cd | 35.13 d | 33.59 D | 0.856 ** |
Bentonite | 33.74 cd | 29.40 c | 19.35 a | 17.90 a | 25.10 C | −0.912 ** |
CaO | 15.63 a | 19.55 a | 24.45 b | 31.83 cd | 22.87 B | 0.998 ** |
Average | 24.50 AB | 25.48 A | 23.61 B | 25.38 A | 24.74 | 0.226 |
Chromium (Cr) | ||||||
Without amendments | 12.74 b | 12.09 b | 9.62 ab | 6.37 a | 10.21 B | −0.988 ** |
Compost | 6.75 a | 48.10 g | 48.75 g | 44.20 e–g | 36.95 A | 0.615 * |
Bentonite | 7.01 a | 34.32 c | 39.39 d | 39.65 de | 30.09 C | 0.765 ** |
CaO | 6.63 a | 43.29 d–f | 47.19 fg | 47.06 fg | 36.04 A | 0.730 ** |
Average | 8.28 C | 34.45 AB | 36.24 B | 34.32 A | 28.32 | 0.670 * |
Material | Diesel Oil Dose (cm3 kg−1 d.m. of Soil) | Average | r | |||
---|---|---|---|---|---|---|
0 | 2.5 | 5 | 10 | |||
Nickel (Ni) | ||||||
Without amendments | 14.27 a–f | 15.08 b–f | 17.94 d–f | 18.72 ef | 16.50 B | 0.933 ** |
Compost | 21.02 f | 16.90 c–f | 14.17 a–f | 8.32 a–c | 15.10 B | −0.997 ** |
Bentonite | 14.78 a–f | 8.97 a–d | 6.76 ab | 6.50 ab | 9.25 A | −0.826 ** |
CaO | 20.51 ef | 11.44 a–e | 8.45 a–c | 5.85 a | 11.56 A | −0.892 ** |
Average | 17.65 B | 13.10 A | 11.83 A | 9.85 A | 13.11 | −0.919 ** |
Zinc (Zn) | ||||||
Without amendments | 28.85 c | 28.38 c | 26.96 bc | 19.19 a | 25.85 B | −0.946 ** |
Compost | 34.20 d | 40.78 e | 40.68 e | 33.85 d | 37.38 C | −0.207 |
Bentonite | 30.35 cd | 29.61 c | 24.33 b | 18.27 a | 25.64 AB | −0.981 ** |
CaO | 28.07 bc | 27.50 bc | 24.36 b | 17.40 a | 24.33 A | −0.976 ** |
Average | 30.37 B | 31.57 C | 29.08 AB | 22.18 A | 28.30 | −0.912 ** |
Copper (Cu) | ||||||
Without amendments | 2.524 a | 2.700 a | 2.725 a | 2.750 a | 2.675 C | 0.812 ** |
Compost | 2.548 a | 5.650 d | 5.450 cd | 5.000 b–d | 4.662 B | 0.533 * |
Bentonite | 3.210 a | 4.500 b | 5.150 b–d | 5.300 b–d | 4.540 AB | 0.865 ** |
CaO | 2.744 a | 4.500 b | 4.550 bc | 5.100 b–d | 4.224 A | 0.846 ** |
Average | 2.757 B | 4.338 A | 4.469 A | 4.538 A | 4.025 | 0.746 ** |
Material | Diesel Oil Dose (cm3 kg−1 d.m. of Soil) | Average | r | |||
---|---|---|---|---|---|---|
0 | 2.5 | 5 | 10 | |||
Manganese (Mn) | ||||||
Without amendments | 266.3 a | 272.1 a–c | 276.0 a–c | 271.4 a–c | 271.5 B | 0.468 |
Compost | 266.2 a | 281.6 a–d | 311.4 fg | 286.5 b–e | 286.4 A | 0.473 |
Bentonite | 265.8 a | 281.6 a–d | 300.8 d–f | 324.5 g | 293.2 A | 0.994 ** |
CaO | 268.6 ab | 290.0 c–e | 302.4 ef | 299.4 d–f | 290.1 A | 0.788 ** |
Average | 266.7 B | 281.3 C | 297.7 A | 295.5 A | 285.3 | 0.836 ** |
Iron (Fe) | ||||||
Without amendments | 8141 de | 8443 e | 9068 f | 10,127 g | 8945 C | 0.995 ** |
Compost | 7035 b | 9647 g | 7436 bc | 7394 bc | 7878 A | −0.172 |
Bentonite | 8010 d | 6138 a | 7018 b | 6138 a | 6826 B | −0.669 * |
CaO | 7530 c | 7490 c | 8203 de | 8086 de | 7827 A | 0.765 ** |
Average | 7679 B | 7930 A | 7931 A | 7936 A | 7869 | 0.699 ** |
Cobalt (Co) | ||||||
Without amendments | 3.058 h | 1.980 fg | 1.530 c–e | 1.230 bc | 1.950 A | −0.899 ** |
Compost | 2.764 h | 1.500 c–e | 1.350 bc | 1.320 bc | 1.734 C | −0.749 ** |
Bentonite | 3.028 h | 1.800 e–g | 1.770 d–f | 1.440 cd | 2.010 A | −0.829 ** |
CaO | 2.146 g | 1.050 ab | 1.020 ab | 0.750 a | 1.242 B | −0.821 ** |
Average | 2.749 D | 1.583 C | 1.418 B | 1.185 A | 1.734 | −0.834 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszkowski, M.; Kordala, N. Applicability of Compost and Mineral Materials for Reducing the Effect of Diesel Oil on Trace Element Content in Soil. Materials 2023, 16, 3655. https://doi.org/10.3390/ma16103655
Wyszkowski M, Kordala N. Applicability of Compost and Mineral Materials for Reducing the Effect of Diesel Oil on Trace Element Content in Soil. Materials. 2023; 16(10):3655. https://doi.org/10.3390/ma16103655
Chicago/Turabian StyleWyszkowski, Mirosław, and Natalia Kordala. 2023. "Applicability of Compost and Mineral Materials for Reducing the Effect of Diesel Oil on Trace Element Content in Soil" Materials 16, no. 10: 3655. https://doi.org/10.3390/ma16103655
APA StyleWyszkowski, M., & Kordala, N. (2023). Applicability of Compost and Mineral Materials for Reducing the Effect of Diesel Oil on Trace Element Content in Soil. Materials, 16(10), 3655. https://doi.org/10.3390/ma16103655