Faceting/Roughening of WC/Binder Interfaces in Cemented Carbides: A Review
Abstract
:1. Introduction
2. Modification of Fabrication Parameters of Conventional WC-Co Cemented Carbides
3. Alloying Conventional Cobalt Binders Using Various Metals
4. Alloying of Cobalt Binder Using Nitrides, Borides, Carbides, Silicides, Oxides
5. Substitution of Cobalt with Other Binders
6. Faceting–Roughening of WC/HEA Binder Interfaces
7. Summary of a Conducted Literature Survey and Definition of the Future Work
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardarelli, F. Materials Handbook: A Concise Desktop Reference; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Haynes, W.M. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Swab, J.J.; Wright, J.C. Application of ASTM C1421 to WC-Co fracture toughness measurement. Int. J. Refract. Met. Hard Mater. 2016, 58, 8–13. [Google Scholar] [CrossRef]
- Konyashin, I.; Ries, B.; Lachmann, F.; Cooper, R.; Mazilkin, A.; Straumal, B.; Aretz, A. Hardmetals with nano-grained reinforced binder: Binder fine structure and hardness. Int. J. Refractory Metals Hard Mater. 2008, 26, 583–588. [Google Scholar] [CrossRef]
- Konyashin, I.; Lachmann, F.; Ries, B.; Mazilkin, A.A.; Straumal, B.B.; Kübel, C.; Llanes, L.; Baretzky, B. Strengthening zones in the Co matrix of WC–Co cemented carbides. Scripta Mater. 2014, 83, 17–20. [Google Scholar] [CrossRef]
- Sahoo, B.N.; Mohanty, A.; Gangopadhyay, S.; Vipindas, K. An insight into microstructure and machining performance of deep cryogenically treated cemented carbide inserts. J. Manuf. Process. 2020, 58, 819–831. [Google Scholar] [CrossRef]
- Straumal, B.B.; Semenov, V.N.; Kogtenkova, O.A.; Watanabe, T. Pokrovsky-Talapov critical behavior and rough-to-rough ridges of the Σ3 coincidence tilt boundary in Mo. Phys. Rev. Lett. 2004, 92, 196101. [Google Scholar] [CrossRef]
- Straumal, B.B.; Kogtenkova, O.A.; Gornakova, A.S.; Sursaeva, V.G.; Baretzky, B. Review: Grain boundary faceting-roughening phenomena. J. Mater. Sci. 2016, 51, 382–404. [Google Scholar] [CrossRef]
- Ernst, F.; Finnis, M.W.; Koch, A.; Schmidt, C.; Straumal, B.; Gust, W. Structure and energy of twin boundaries in copper. Z. Metallk. 1996, 87, 911–922. [Google Scholar]
- Protasova, S.G.; Kogtenkova, O.A.; Straumal, B.B. Faceting of individual Σ3 Grain boundaries in Al. Mater. Sci. Forum 2007, 558–559, 949–954. [Google Scholar] [CrossRef]
- Straumal, B.B.; Polyakov, S.A.; Bischoff, E.; Gust, W.; Mittemeijer, E.J. Faceting of Σ3 and Σ9 grain boundaries in copper. Interface Sci. 2001, 9, 287–292. [Google Scholar] [CrossRef]
- Straumal, B.B.; Polyakov, S.A.; Mittemeijer, E.J. Temperature influence on the faceting of Σ3 and Σ9 grain boundaries in Cu. Acta Mater. 2006, 54, 167–172. [Google Scholar] [CrossRef]
- Straumal, B.B.; Polyakov, S.A.; Bischoff, E.; Gust, W.; Baretzky, B. Faceting of Σ3 and Σ9 grain boundaries in Cu–Bi alloys. Acta Mater. 2005, 53, 247–254. [Google Scholar] [CrossRef]
- Wang, J.; Han, Y.; Zhao, Y.; Li, X.; Yi, D.; Guo, Z.; Cao, Y.; Liu, B.; Tang, H.P. Microstructure and properties of WC-12Co cemented carbide fabricated via selective electron beam melting. Int. J. Refract. Met. Hard Mater. 2022, 106, 105847. [Google Scholar] [CrossRef]
- Akerman, J.; Ericson, T. Cemented Carbide Body with Improved High Temperatures and Thermomechanical Properties. US Patent 6,126,709, 24 October 2001. [Google Scholar]
- Zhang, L.; Hu, C.; Yang, Y.; Misra, R.D.K.; Kondoh, K.; Lu, Y. Laser powder bed fusion of cemented carbides by developing a new type of Co coated WC composite powder. Addit. Manufact. 2022, 55, 102820. [Google Scholar] [CrossRef]
- Rabouhi, H.; Eyidi, D.; Khelfaoui, Y.; Khireddine, A. Microstructural and mechanical characterisation of WC–Co alloys elaborated by liquid phase sintering and hot isostatic pressing: Study of WC crystallites size evolution. Can. Metall. Q. 2022, 61, 66240. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Z.; Wang, B.; Yuan, J.; Huang, L.; Yin, Z. Microstructure and properties of WC-8Co cemented carbides prepared by multiple spark plasma sintering. Int. J. Appl. Ceram. Technol. 2021, 18, 2010–2019. [Google Scholar] [CrossRef]
- Fries, S.; Burkamp, K.; Broeckmann, C.; Richter, S.; Westermann, H.; Süess, B. Influence of carbon content on fatigue strength of cemented carbides. Int. J. Refract. Met. Hard Mater. 2022, 105, 105823. [Google Scholar] [CrossRef]
- Shi, K.-H.; Zhou, K.-C.; Li, Z.-Y.; Zan, X.-Q.; Dong, K.-L.; Jiang, Q. Microstructure and properties of ultrafine WC–Co–VC cemented carbides with different Co contents. Rare Met. 2022, 41, 1955–1960. [Google Scholar] [CrossRef]
- Edtmaier, C.; Wolf, M.; de Oro Calderon, R.; Schubert, W.-D. Effect of nickel on the formation of γ/γ’ microstructures in WC/Co–Ni–Al–W. Int. J. Refract. Met. Hard Mater. 2021, 100, 105652. [Google Scholar] [CrossRef]
- Zeng, H.; Liu, W.; Han, F.; Wie, C. Microstructures and properties of WC–10Co tuned by Ru integration and ball-milling. Mater. Sci. Technol. 2022, 21, 7169. [Google Scholar] [CrossRef]
- Zeng, H.; Liu, W.; Wei, C. Influence of Ru on the microstructure and performance of WC–Co cemented carbides. Mater. Sci. Technol. 2022, 38, 940–946. [Google Scholar] [CrossRef]
- Zhou, P.-F.; Xiao, D.-H.; Yuan, T.-C. Comparison between ultrafinegrained WC–Co and WC–HEA-cemented carbides. Powder Metall. 2017, 60, 1–6. [Google Scholar] [CrossRef]
- Xu, Z.; Meenashisundaram, G.K.; Ng, F.L. High density WC–45Cr–18Ni cemented hard metal fabricated with binder jetting additive manufacturing. Virtual Phys. Prototyp. 2022, 17, 92–104. [Google Scholar] [CrossRef]
- Hu, H.; Liu, X.; Chen, J.; Lu, H.; Liu, C.; Wang, H.; Luan, J.; Jiao, Z.; Liu, Y.; Song, X. High-temperature mechanical behavior of ultra-coarse cemented carbide with grain strengthening. J. Mater. Sci. Technol. 2022, 104, 8–18. [Google Scholar] [CrossRef]
- Wang, K.-F.; Yang, X.-H.; Deng, X.-C.; Chou, K.-C.; Zhang, G.-H. Enhancement of the mechanical properties of ultrafine-grained WC-Co cemented carbides via the in-situ generation of VC. J. Alloys Compd. 2022, 903, 163961. [Google Scholar] [CrossRef]
- Upadhyaya, G.S.; Bhaumik, S.K. Sintering of submicron WC–10wt.% Co hard metals containing nickel and iron. Mater. Sci. Eng. A 1988, 105, 249–256. [Google Scholar] [CrossRef]
- Gonzalez, R.; Echeberrıa, J.; Sanchez, J.M.; Castro, F. WC-(Fe, Ni, C) hardmetals with improved toughness through isothermal heat treatments. J. Mater. Sci. 1995, 30, 3435–3439. [Google Scholar] [CrossRef]
- Mueller-Grunz, A.; Alveen, P.; Rassbach, S.; Useldinger, R.; Moseley, S. The manufacture and characterization of WC-(Al)CoCrCuFeNi cemented carbides with nominally high entropy alloy binders. Int. J. Refract. Met. Hard Mater. 2019, 84, 105032. [Google Scholar] [CrossRef]
- Schölhammer, J.; Baretzky, B.; Gust, W.; Mittemeijer, E.; Straumal, B. Grain boundary grooving as an indicator of grain boundary phase transformations. Interface Sci. 2001, 9, 43–53. [Google Scholar] [CrossRef]
- Sursaeva, V.G.; Straumal, B.B.; Gornakova, A.S.; Shvindlerman, L.S.; Gottstein, G. Effect of faceting on grain boundary motion in Zn. Acta Mater. 2008, 56, 2728–2734. [Google Scholar] [CrossRef]
- Ye, X.; Xiang, C.; Nie, H.; Lei, H.; Du, Y.; Xing, W.; Luo, J.; Yu, Z. Facet-dependent interfacial segregation behavior of V-doped WC-Co cemented carbides. Ceram. Int. 2022, 48, 11251–11256. [Google Scholar] [CrossRef]
- Schubert, W.D.; Fugger, M.; Wittmann, B.; Useldinger, R. Aspects of sintering of cemented carbides with Fe-based binders. Int. J. Refract. Met. Hard Mater. 2015, 49, 110–123. [Google Scholar] [CrossRef]
- Agte, C. Entwicklung der Hartmetalltechnik waehrend der letzten Jahre in der Deutschen Demokratischen Republik. Neue Huette 1957, 9, 537–544. [Google Scholar]
- Moskowitz, D. Abrasion resistant iron-nickel bonded tungsten carbide. Mod. Dev. Powder Metall. 1977, 10, 543–551. [Google Scholar]
- Kakeshita, T.; Wayman, C.M. Martensitic transformations in cermets with a metastable austenitic binder I: WC(Fe Ni C). Mater. Sci. Eng. A 1991, 141, 209–219. [Google Scholar] [CrossRef]
- Gao, Y.; Luo, B.H.; Bai, Z.H.; Zhu, B.; Ouyang, S. Effects of deep cryogenic treatment on the microstructure and properties of WC Fe Ni cemented carbides. Int. J. Refract. Met. Hard Mater. 2016, 58, 42–50. [Google Scholar] [CrossRef]
- Chang, S.H.; Chen, S.L. Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys. J. Alloys Compd. 2014, 585, 407–413. [Google Scholar] [CrossRef]
- Fernandes, C.M.; Senos, A.M.R.; Castanho, J.M.; Vieira, M.T. Effect of the Ni chemical distribution on the reactivity and densification of WC-(Fe/Ni/Cr) composite powders. Mater. Sci. Forum 2006, 514, 633–637. [Google Scholar] [CrossRef]
- Fernandes, C.M.; Popovich, V.; Matos, M.; Senos, A.M.R.; Vieira, M.T. Carbide phases formed in WC-M (M=Fe/Ni/Cr) systems. Ceram. Int. 2009, 35, 369–372. [Google Scholar] [CrossRef]
- Zhao, H.; Shen, W.; Tian, H.; Xu, G.; Du, Y. Investigation of ultrafine WC–Co–Fe–Ni–Cr3C2 cemented carbide microstructure and properties based on phase diagram thermodynamics. Int. J. Mater. Res. 2022, 113, 8559. [Google Scholar] [CrossRef]
- Jing, K.; Guo, Z.; Hua, T.; Xiong, J.; Liao, J.; Liang, L.; Yang, S.; Yi, J. Zhang, Strengthening mechanism of cemented carbide containing Re. Mater. Sci. Eng. A 2022, 838, 142803. [Google Scholar] [CrossRef]
- Lin, T.; Li, Q.; Han, Y.; Song, K.; Wang, X.; Shao, H.; Dong, J.; Wang, H.; Deng, X. Effects of Nb and NbC additives on microstructure and properties of WC-Co-Ni cemented carbides. Int. J. Refract. Met. Hard Mater. 2022, 103, 105782. [Google Scholar] [CrossRef]
- Wolf, M.; Edtmaier, C.; de Oro Calderon, R. Influence of carbon on the formation of γ/γ’nmicrostructure and κ-phase in the WC/Co–Ni–Al–W system: Ab initio calculations and experimental studies. J. Mater. Sci. 2022, 57, 13779–13799. [Google Scholar] [CrossRef]
- Fan, H.-J.; Liu, Y.; Ye, J.-W.; Qiu, W.-B.; Qiu, Y.-C. Microstructure and mechanical properties of WC–(Ti, M)(C, N)–Co cemented carbides with different nitrogen contents. Rare Met. 2022, 41, 3530–3538. [Google Scholar] [CrossRef]
- Agyapong, J.; Duntu, S.H.; Czekanski, A.; Yiadom, S.B. Microstructural evolution and properties of cemented carbides alloyed with hexagonal boron nitride (h-BN) using selective laser melting. Int. J. Adv. Manuf. Technol. 2022, 122, 3647–3666. [Google Scholar] [CrossRef]
- Lia, M.; Gong, M.; Cheng, Z.; Mo, D.; Wang, L.; Dusza, J.; Zhang, C. Novel WC-Co-Ti3SiC2 cemented carbide with ultrafine WC grains and improved mechanical properties. Ceram. Intern. 2022, 48, 22335–22342. [Google Scholar] [CrossRef]
- Liu, X.; Liang, Z.; Wang, H.; Zhao, Z.; Liu, C.; Lu, H.; Song, X. Wear resistance of ultra-coarse WC-WCoB-Co cemented carbide at different oxidation stages. Int. J. Refract. Met. Hard Mater. 2022, 105, 105827. [Google Scholar] [CrossRef]
- Deng, X.-C.; Wang, K.-F.; Zhang, G.-H. Effects of oxide addition on structure and properties of WC-10 Co cemented carbide obtained by in situ synthesized powder. Int. J. Appl. Ceram. Technol. 2022, 19, 1916–1928. [Google Scholar] [CrossRef]
- Iakovakis, E.; Avcu, E.; Roy, M.J.; Gee, M.; Matthews, A. Dry sliding wear behaviour of additive manufactured CrC-rich WC-Co cemented carbides. Wear 2021, 486–487, 204127. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Ding, J. Effect of the additive graphene oxide on tribological properties of WC-Co cemented carbide. Int. J. Refract. Met. Hard Mater. 2022, 109, 105962. [Google Scholar] [CrossRef]
- Qin, J.; Hui., J.; Dong., W.; Bai., Y.; Fan., J.; Ding., H.; Zhu., S. Preparation of high-performance WC-MgO composites by spark plasma sintering. Adv. Eng. Mater. 2022, 2022, 2200625. [Google Scholar] [CrossRef]
- Sui, G.Z.; Gong, M.F.; Wang, X.H.; Xia, X.Q.; Mo, D.Y.; Dusza, J. Microstructure and mechanical properties of WC-Co-Ti(C0.5, N0.5)-Mo cemented carbides. Strength Mater. 2022, 54, 473482. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, F.; Yuan, X.; Yang, B.; Wang, F.; Li, Y. Effects of processing parameters on the microstructure and mechanical properties of nanoscaled WC-10Co cemented carbide. Materials 2022, 15, 4472. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Ouyang, S.; Chen, H.; Guo, S.; Yin, L.; Tan, Z.; Shi, H.; Zhong, Z.; Qiu, L. Effect of MWCNTs on microstructure and properties of WC-9Co gradient cemented carbides. Ceram. Int. 2022, 48, 19295–19304. [Google Scholar] [CrossRef]
- Kuai, J.; Zhang, H.; Ardashev, D.V.; Li, X.; Liu, S. Mechanical properties of WC–10Co–CNT nano-cemented carbide. Ferroelectricity 2022, 593, 181–187. [Google Scholar] [CrossRef]
- Luo, P.; Liang, Y.; He, G.; Yang, Y.; Tian, X. Effects of multi-layer graphene on the fracture toughness and wear resistance of WC–11Co cemented carbide. J. Am. Ceram. Soc. 2022, 10, 453–464. [Google Scholar] [CrossRef]
- Amani, M.G.; Moazami-Goudarzi, M.; Kazemi, A. Enhanced wear resistance of cemented carbides reinforced with SiC nanoparticles. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 8108–8115. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, T.; Li, Y.; Xie, Z.; Liao, N.; Liang, X.; Sang, S.; Dai, J. Enhanced mechanical and tribological properties of oscillatory pressure sintered WC-GNPs composites. J. Am. Ceram. Soc. 2022, 105, 5501–5514. [Google Scholar] [CrossRef]
- Yang, X.-H.; Wang, K.-F.; Zhang, G.-H.; Chou, K.-C. Fabrication and performances of WC-Co cemented carbide with a low cobalt content. Int. J. Appl. Ceram. Technol. 2022, 19, 1341–1353. [Google Scholar] [CrossRef]
- Koroghli, M.; Alimirzaloo, V.; Mohammadzadeh, H.; Kavanlouei, M. Sintering behavior of WC-Co with additives of TiC, VC, and (Ta, Nb)C: Microstructural and mechanical features. JMEPEG 2022, 31, 814–824. [Google Scholar] [CrossRef]
- Kwon, H.; Suh, C.Y.; Kim, W. Microstructure and mechanical properties of (Ti, W)C–Ni cermet prepared using a nano-sized TiC–WC powder mixture. J. Alloys Compd. 2015, 639, 21–26. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, Z.; Deng, X.; Lu, Z.; Liu, J.; Qu, Z.; Jin, F. Microstructure and mechanical behavior of cemented carbide with Al alloy binder fabricated by selective laser melting. Int. J. Refract. Met. Hard Mater. 2022, 108, 105916. [Google Scholar] [CrossRef]
- Vilardell, A.M.; Cinca, N.; Tarrés, E.; Kobashi, M. Iron aluminides as an alternative binder for cemented carbides: A review and perspective towards additive manufacturing. Mater. Today Commun. 2022, 31, 103335. [Google Scholar] [CrossRef]
- Farooq, T.; Davies, T.J. Tungsten carbide hard metals cemented with ferroalloys. Int. J. Powder Metall. 1991, 27, 347–355. [Google Scholar]
- Fernandes, C.M.; Senos, A.M.R.; Vieira, M.T.; Fernandes, J.V. Composites from WC powders sputter-deposited with iron rich binders. Ceram. Int. 2009, 35, 1617–1623. [Google Scholar] [CrossRef]
- Rajabi, A.; Ghazali, M.J.; Syarif, J.; Daud, A.R. Development and application of tool wear: A review of the characterization of TiC-based cermets with different binders. Chem. Eng. J. 2014, 255, 445–452. [Google Scholar] [CrossRef]
- Wu, Y.; Leng, B.; Zhou, X. Corrosion behaviors of Ni-WC cemented carbide in high temperature molten fluoride salt and vapor. J. Nucl. Mater. 2022, 561, 153541. [Google Scholar] [CrossRef]
- Tracey, V.A. Nickel in hardmetals. Int. J. Refract. Met. Hard Mater. 1992, 11, 137–149. [Google Scholar] [CrossRef]
- Tarrago, J.M.; Ferrari, C.; Reig, B.; Coureaux, D.; Schneider, L.; Llanes, L. Mechanics and mechanisms of fatigue in a WC–Ni hardmetal and a comparative study with respect to WC–Co hardmetals. Int. J. Fatigue 2015, 70, 252–257. [Google Scholar] [CrossRef]
- Tracey, V.A.; Hall, N.R.V. Nickel matrices in cemented carbides. Powder Metall. Int. 1980, 12, 132. [Google Scholar]
- Ekemar, S.; Lindholm, L.; Hartzell, T. Aspects on nickel as a binder metal in WC-based cemented carbides. In Proceedings of the 10th Plansee Seminar-Metallwerk Plansee, Reutte, Austria, 1–5 June 1981; Volume 1, pp. 477–824. [Google Scholar]
- Penrice, T.W. Alternative binders for hard metals. Carbide Tool J. 1988, 20, 12–15. [Google Scholar]
- Shon, I.J. High-frequency induction-heated consolidation of nanostructured WC and WC–Al hard materials and their mechanical properties. Int. J. Refract. Met. Hard Mater. 2017, 64, 242–247. [Google Scholar] [CrossRef]
- Shon, I.J. Effect of Al on sintering and mechanical properties of WC–Al composites. Ceram. Int. 2016, 42, 17884–17891. [Google Scholar] [CrossRef]
- Hanyaloglu, C.; Aksakal, B.; Bolton, J.D. Production and indentation analysis of WC/Fe–Mn as an alternative to cobalt-bonded hardmetals. Mater. Charact. 2001, 47, 315–322. [Google Scholar] [CrossRef]
- Castro, F.R. Consolidation of tungsten carbide cemented carbides with iron-manganese binders. Met. Powder Rep. 1997, 52, 40. [Google Scholar] [CrossRef]
- Maccio, M.R.; Berns, H. Sintered hardmetals with iron-manganese binder. Powder Metall. 2012, 55, 101–109. [Google Scholar] [CrossRef]
- Sevostianova, I.N.; Gnyusov, S.F.; Garms, A.P.; Kul’kov, S.N. Heat treatment and matrix composition effect on the formation of physical and mechanical properties of solid alloys WC–(Fe–Mn–C). Perspekt. Mater. 1998, 4, 37–41. [Google Scholar]
- Siemiaszko, D.; Rosinski, M.; Michalski, A. Nanocrystalline WC with non-toxic Fe–Mn binder. Phys. Status Solidi C 2010, 7, 1376–1379. [Google Scholar] [CrossRef]
- Shimizu, K.I.; Tanaka, Y. The γ→ε→α′ martensitic transformations in an Fe–Mn–C alloy. Trans. Jpn. Inst. Met. 1978, 19, 685–693. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, J.; Tang, H.; Ma, X.; Zhao, W. Investigation on the mechanical properties of WCFe–Cu hard alloys. J. Alloys Compd. 2015, 632, 729–734. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, J.; Tang, H.; Ma, X.; Zhao, W. Effect of Mo addition on the microstructure and properties of WC–Ni–Fe hard alloys. J. Alloys Compd. 2015, 646, 155–160. [Google Scholar] [CrossRef]
- Chen, C.; Dong, Y.; Hu, C.; Du, Y.; Wei, S.; Long, J.; Wang, C.; Xiao, L.; Mao, F. Fabrication of gradient cemented carbide with Ni3Al binder: Simulations and experiments. Ceram. Int. 2022, 48, 12756–12763. [Google Scholar] [CrossRef]
- Huang, B.; Xiong, W.; Yang, Q.; Yao, Z.; Zhang, G.; Zhang, M. Preparation, microstructure and mechanical properties of multicomponent Ni3Al bonded cermets. Ceram. Int. 2014, 40, 14073–14081. [Google Scholar] [CrossRef]
- Li, Y.X.; Hu, J.D.; Wang, H.Y.; Guo, Z.X. Study of TiC/Ni3Al composites by laser ignited selfpropagating high-temperature synthesis (LISHS). Chem. Eng. J. 2008, 140, 621–625. [Google Scholar] [CrossRef]
- Panov, V.S.; Gol’dberg, M.A. Interaction of tungsten carbide with aluminum nickelide Ni3Al. Powder Metall. Met. Ceram. 2009, 48, 445–448. [Google Scholar] [CrossRef]
- Tumanov, A.V.; Gostev, Y.V.; Panov, V.S.; Kots, Y.F. Wetting of TiC–WC system carbides with molten Ni3Al, Powder. Metall. Met. Ceram. 1986, 25, 428–430. [Google Scholar] [CrossRef]
- Panov, V.S.; Shugaev, V.A.; Gol’dberg, M.A. The possibility of utilization of Ni3Al as the binding material for hard alloys. Russ. J. Non-Ferr. Met. 2009, 50, 317–320. [Google Scholar] [CrossRef]
- Choi, S.C.; Cho, H.J.; Kim, Y.J.; Lee, D.B. High-temperature oxidation behavior of pure Ni3Al. Oxid. Met. 1996, 46, 51–72. [Google Scholar] [CrossRef]
- Buchholz, S.; Farhat, Z.N.; Kipouros, G.J.; Plucknett, K.P. Reciprocating wear response of Ti(C, N)-Ni3Al cermets. Can. Metall. Quart. 2013, 52, 69–80. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Olubambi, P.A.; Andrews, A. Processing and characterization of WC-10Co-7Ni-3Cr based yttria stabilized zirconia spark plasma sintered composites. Int. J. Refract. Met. Hard Mater. 2015, 48, 157–166. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Zhou, J.; Fu, K.; Wei, W.; Du, M.; Zhao, X. Effects of Y2O3 addition on microstructures and mechanical properties of WC-Co functionally graded cemented carbides. Int. J. Refract. Met. Hard Mater. 2015, 50, 53–58. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S. Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation. J. Alloys Compd. 2005, 391, 228–235. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, J.; Chen, M.; Ni, X.; Li, Z.; Gong, F. Determination of microstructure and mechanical properties of VC/Cr3C2 reinforced functionally graded WC–TiC–Al2O3 micro-nano composite tool materials via two-step sintering. J. Alloys Compd. 2017, 709, 197–205. [Google Scholar] [CrossRef]
- Pereira, P.; Ferro Rocha, A.M.; Sacramento, J.; Oliveira, F.J.; Senos, A.M.R.; Malheiros, L.F.; Bastos, A.C. Corrosion resistance of WC hardmetals with different Co and Ni-based binders. Int. J. Refract. Met. Hard Mater. 2022, 104, 105799. [Google Scholar] [CrossRef]
- Radajewski, M.; Schimpf, C.; Krüger, L. Study of processing routes for WC-MgO composites with varying MgO contents conesolidated by FAST/SPS. J. Eur. Ceram. Soc. 2017, 37, 2031–2037. [Google Scholar] [CrossRef]
- Ouyang, C.; Zhu, S.; Li, D.Y. Corrosion and corrosive wear behavior of WC-MgO composites with and without grain-growth inhibitors. J. Alloys Compd. 2014, 615, 146–155. [Google Scholar] [CrossRef]
- Basu, B.; Lee, J.H.; Kim, D.Y. Development of WC-ZrO2 nanocomposites by spark plasma sintering. J. Am. Ceram. Soc. 2004, 87, 317–319. [Google Scholar] [CrossRef]
- Basu, B.; Venkateswaran, T.; Sarkar, D. Pressureless sintering and tribological properties of WC-ZrO2 composites. J. Eur. Ceram. Soc. 2005, 25, 1603–1610. [Google Scholar] [CrossRef]
- Malek, O.; Lauwers, B.; Perez, Y.; De Baets, P.; Vleugels, J. Processing of ultrafine ZrO2 toughened WC composites. J. Eur. Ceram. Soc. 2009, 29, 3371–3378. [Google Scholar] [CrossRef]
- Ren, X.; Peng, Z.; Wang, C.; Miao, H. Influence of nano-sized La2O3 addition on the sintering behavior and mechanical properties of WC-La2O3 composites. Ceram. Int. 2015, 41, 14811–14818. [Google Scholar] [CrossRef]
- Ma, J.; Zhu, S.G.; Di, P.; Zhang, Y. Influence of La2O3 addition on hardness, flexural strength and microstructure of hot-pressing sintered WC-MgO bulk composites. Mater. Des. 2011, 32, 2125–2129. [Google Scholar] [CrossRef]
- Matsumoto, A.; Kobayashi, K.; Nishio, T.; Ozaki, K. Based WC composites prepared by combustion synthesis. In Proceedings of the 16th International Plansee Seminar, Reutte, Austria, 30 May–3 June 2005; Volume 2, pp. 287–294. [Google Scholar]
- Misra, A.K. Identification of thermodynamically stable ceramic reinforcement materials for iron aluminide matrices. Metall. Mater. Trans. A 1990, 21, 441–446. [Google Scholar] [CrossRef]
- Mosbah, A.Y.; Wexler, D.; Calka, A. Tungsten carbide iron aluminide hardmetals: Nanocrystalline vs microcrystalline. Mater. Sci. Forum 2001, 360–362, 649–650. [Google Scholar] [CrossRef]
- Schneibel, J.H.; Subramanian, R. Bonding of WC with an iron aluminide (FeAl) intermetallic. Met. Powder Ind. Fed. 1996, 5, 167–175. [Google Scholar]
- Schneibel, J.H.; Carmichael, C.A.; Specht, E.D.; Subramanian, R. Liquid-phase sintered iron aluminide-ceramic composites. Intermetallics 1997, 5, 61–67. [Google Scholar] [CrossRef]
- Vilhena, L.M.; Fernandes, C.M.; Sacramento, J.; Senos, A.M.R.; Ramalho, A. Sliding wear and friction behaviour of WC-stainless steel and WC-Co composites. Lubr. Sci. 2022, 34, 247–257. [Google Scholar] [CrossRef]
- Vilhena, L.; Domingues, B.; Fernandes, C.; Senos, A.; Ramalho, A. Mechanical and tribological characterization of WC-Co and WC-AISI 304 composites by a newly developed equipment. Materials 2022, 15, 1187. [Google Scholar] [CrossRef]
- Oliveira, A.B.; Bastos, A.C.; Fernandes, C.M.; Pinho, C.M.S.; Senos, A.M.R.; Soares, E.; Sacramento, J.; Zheludkevich, M.L.; Ferreira, M.G.S. Corrosion behaviour of WC–10% AISI304 cemented carbides. Corros. Sci. 2015, 100, 322–331. [Google Scholar] [CrossRef]
- Marques, B.J.; Fernandes, C.M.; Senos, A.M.R. Sintering, microstructure and properties of WCAISI304 powder composites. J. Alloys Compd. 2013, 562, 164–170. [Google Scholar] [CrossRef]
- Trung, T.B.; Zuhailawati, H.; Ahmad, Z.A.; Ishihara, K.N. Grain growth, phase evolution and properties of NbC carbide-doped WC–10AISI304 hardmetals produced by pseudo hot isostatic pressing. J. Alloys Compd. 2013, 552, 20–25. [Google Scholar] [CrossRef]
- Trung, T.B.; Zuhailawati, H.; Ahmad, Z.A.; Ishihara, K.N. Sintering characteristics and properties of WC–10AISI304 (stainless steel) hardmetals with added graphite. Mater. Sci. Eng. A 2014, 605, 210–214. [Google Scholar] [CrossRef]
- Jung, G.N.; Kim, B.S.; Yoon, J.K.; Shon, I.J. Properties and rapid sintering of nanostructured WC and WC–TiAl hard materials by the pulsed current activated heating. J. Ceram. Process. Res. 2016, 17, 295–299. [Google Scholar] [CrossRef]
- Kwak, B.W.; Song, J.H.; Kim, B.S.; Shon, I.J. Mechanical properties and rapid sintering of nanostructured WC and WC–TiAl3 hard materials by the pulsed current activated heating. Int. J. Refract. Met. Hard Mater. 2016, 54, 244–250. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Q.; He, X.; Shi, J.; Liu, L.; Zhai, G. Effect of nano-AlN content on the microstructure and mechanical properties of SiC foam prepared by siliconization of carbon foam. J. Eur. Ceram. Soc. 2010, 30, 113–118. [Google Scholar] [CrossRef]
- Ren, X.; Peng, Z.; Peng, Y.; Wang, C.; Fu, Z.; Qi, L. Miao, H, Ultrafine binderless WC-based cemented carbides with varied amounts of AlN nano-powder fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2013, 41, 308–314. [Google Scholar] [CrossRef]
- Konyashin, I.; Ries, B.; Hlawatschek, D.; Zhuk, Y.; Mazilkin, A.; Straumal, B.; Dorn, F.; Park, D. Wear-resistance and hardness: Are they directly related for nanostructured hard materials? Int. J. Refract. Met. Hard Mater. 2015, 49, 203–211. [Google Scholar] [CrossRef]
- Konyashin, I.; Straumal, B.B.; Ries, B.; Bulatov, M.F.; Kolesnikova, K.I. Contact angles of WC/WC grain boundaries with binder in cemented carbides with various carbon content. Mater. Lett. 2017, 196, 1–3. [Google Scholar] [CrossRef]
- Qian, C.; Li, K.; Cheng, H.; Zhang, W.; Jiang, X.; Liu, Y. Fracture behavior of cemented carbides with CoNiFe medium entropy alloy binder. Int. J. Refract. Met. Hard Mater. 2021, 98, 105547. [Google Scholar] [CrossRef]
- Qian, C.; Liu, Y.; Cheng, H.; Li, K.; Liu, B. Effect of the carbon content on the morphology evolution of the η phase in cemented carbides with the CoNiFeCr high entropy alloy binder. Int. J. Refract. Met. Hard Mater. 2022, 102, 105731. [Google Scholar] [CrossRef]
- Qian, C.; Liu, Y.; Cheng, H.; Li, K.; Liu, B.; Zhang, X. The effect of carbon content on the microstructure and mechanical properties of cemented carbides with a CoNiFeCr high entropy alloy binder. Materials 2022, 15, 5780. [Google Scholar] [CrossRef]
- Zheng, D. High-entropy-alloy CoFeNiCr bonded WC-based cemented carbide prepared by spark plasma sintering. Metal. Mater. Trans. A 2022, 53, 2724–2729. [Google Scholar] [CrossRef]
- Zhai, K.; Chen, S.; Wang, C.; Li, Q.; Sun, B.; He, J. Microstructure and properties of WC–CoCuFeNi composites fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2022, 105, 105808. [Google Scholar] [CrossRef]
- Chang, F.; Zhang, J.; Lu, S.; Guo, K.; Dai, P.; Liu, C.; Zhang, X. The microstructure and high-temperature oxidation resistance of tungsten carbide with high entropy alloys as binder. J. Ceram. Soc. Jpn. 2022, 130, 477–486. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Huang, C.; Liu, X.; Yang, J.; Li, J. Evolution of high temperature mechanical properties of WC-Al2O3-Co-Y2O3 composite tool materials. J. Mater. Eng. Perform. 2022, 32, 3142–3151. [Google Scholar] [CrossRef]
Alloys’ Compositions and Sintering Temperatures, °C | Hardness, Vickers Units | Fracture Toughness, MPa·m1/2 | Compression Strength and Transverse Rupture Strength, MPa |
---|---|---|---|
Compression strength | |||
WC-10 wt.% Co, 1500 °C [24] | 1910 | 8.10 | 3595 |
WC-12Co after SEBM [14] | 1929 | 1770 | |
WC-12Co, SEBM + 1400 °C [14] | 1686 | 1839 | |
WC-45Cr-18Ni, binder jetting + 1350 °C [25] | >1200 | >2200 | |
WC-8Co [26] at 600 °C | 1270 | ||
WC-8Co-0.8TaC [26] at 600 °C | 1300 | ||
WC-8Co [26] at 800 °C | 950 | ||
WC-8Co-0.8TaC [26] at 800 °C | 1080 | ||
WC-Co [26] at 1000 °C | 800 | ||
WC-8Co-0.8TaC [26] at 1000 °C | 810 | ||
WC-12Co-xVC with x = 0 [27] | 1415 | 12.31 | |
WC-12Co-xVC with x = 2 [27] | 1613 | 12.11 | |
WC-12Co-xVC with x = 4 [27] | 1934 | 12.19 | |
WC-12Co-xVC with x = 6 [27] | 2124 | 11.26 | |
WC-12Co-xVC with x = 8 [27] | 2059 | 10.61 | |
Transverse rupture strength | |||
(Ti, M)(C1−x, Nx) (M = Ta, Nb, W, x = 0) [28] | 1448 | 12.4 | 3780 |
(Ti, M)(C1−x, Nx) (M = Ta, Nb, W, x = 0.15) [28] | 1550 | 14.1 | 3320 |
(Ti, M)(C1−x, Nx) (M = Ta, Nb, W, x = 0.20) [28] | 1560 | 14.2 | 3430 |
(Ti, M)(C1−x, Nx) (M = Ta, Nb, W, x = 0.26) [28] | 1530 | 14.5 | 3500 |
WC-17Co-0 hBN [29] | 1300 | 6.3 | |
WC-17Co-3 hBN [29] | 1700 | 6.4 | |
WC-17Co-5 hBN [29] | 1200 | 6.5 | |
WC-17Co-10 hBN [29] | 1000 | 3.8 | |
WC-10 wt.% Co-0 wt.% Ru [22] | 1200 | 16.5 | 2780 |
WC-10 wt.% Co-1 wt.% Ru [22] | 1310 | 16.0 | 2850 |
WC-10 wt.% Co-2 wt.% Ru [22] | 1300 | 17.2 | 2550 |
WC-10 wt.% Co-3 wt.% Ru [22] | 1310 | 18.2 | 2200 |
WC-10 wt.% Co-4 wt.% Ru [22] | 1330 | 24.2 | 2350 |
WC-10 wt.% Co-5 wt.% Ru [22] | 1320 | 21.0 | 2500 |
WC-10 wt.% Co-6 wt.% Ru [22] | 1320 | 20.0 | 2350 |
WC-10Co7Ni2Fe1Cr4.5C (wt.%) [30] | 1080 | - | 1800 |
WC-10Co7Ni2Fe1Cr4.7C (wt.%) [30] | 1000 | - | 1700 |
WC-10Co7Ni2Fe1Cr4.9C (wt.%) [30] | 950 | - | 3450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straumal, B.B.; Konyashin, I. Faceting/Roughening of WC/Binder Interfaces in Cemented Carbides: A Review. Materials 2023, 16, 3696. https://doi.org/10.3390/ma16103696
Straumal BB, Konyashin I. Faceting/Roughening of WC/Binder Interfaces in Cemented Carbides: A Review. Materials. 2023; 16(10):3696. https://doi.org/10.3390/ma16103696
Chicago/Turabian StyleStraumal, Boris B., and Igor Konyashin. 2023. "Faceting/Roughening of WC/Binder Interfaces in Cemented Carbides: A Review" Materials 16, no. 10: 3696. https://doi.org/10.3390/ma16103696
APA StyleStraumal, B. B., & Konyashin, I. (2023). Faceting/Roughening of WC/Binder Interfaces in Cemented Carbides: A Review. Materials, 16(10), 3696. https://doi.org/10.3390/ma16103696