Effect of Annealing Temperature on Mechanical Properties and Work Hardening of Nickel-Saving Stainless Steel
Abstract
:1. Introduction
2. Materials and Method
3. Result
3.1. Microstructure and Mechanical Properties
3.2. XRD Test and Dislocation Density
3.3. EBSD Test and Phase Transitions
4. Discussion
5. Conclusions
- (1)
- The yield strength of nickel-saving obeys the Hall–Petch equation, and the increase in grain size leads to a decrease in yield strength. The yield strengths of S850, S950, and S1050 were 418 MPa, 354 MPa, and 316 MPa, respectively.
- (2)
- Through plastic deformation, dislocations were created in the stainless steel. Additionally, phase transformation or twinning was utilized to achieve work hardening behavior. As the annealing temperature increases, the work hardening mechanism transitions from martensitic transformation to twinning transformation.
- (3)
- The grains rotate during deformation, and the grain orientation of austenite grains parallel to the deformation direction after deformation is either <111> or <100>. The generated ε-martensite and austenite will have an orientation relationship such as <−1–11>γ||<02–21>ε.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pistorius, P.C. Low-Nickel Austenitic Stainless Steels: Metallurgical Constraints. In Proceedings of the Twelfth International Ferroalloys Congress, Helsinki, Finland, 6–9 June 2010. [Google Scholar]
- Aravindkumar, D.; Thirumalai, R. Investigations on Microstructural Characteristics and Mechanical Properties of 316 L Stainless Steel Welded Joints Using Nickel Coated Filler Material by Gas Tungsten Arc Welding. Mater. Res. Express 2021, 8, 046513. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Anand, G.; Chowdhury, S.G.; Manna, I. Effect of Reverse Austenitic Transformation on Mechanical Property and Associated Texture Evolution in AISI 316 Austenitic Stainless Steel Processed by Low Temperature Rolling and Annealing. Mater. Sci. Eng. A 2018, 734, 139–148. [Google Scholar] [CrossRef]
- Yang, X.-S.; Sun, S.; Ruan, H.-H.; Shi, S.-Q.; Zhang, T.-Y. Shear and Shuffling Accomplishing Polymorphic Fcc γ → Hcp ε → Bct α Martensitic Phase Transformation. Acta Mater. 2017, 136, 347–354. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D. The Effect of Grain Size and Grain Orientation on Deformation Twinning in a Fe–22wt.% Mn–0.6wt.% C TWIP Steel. Mater. Sci. Eng. A 2010, 527, 3552–3560. [Google Scholar] [CrossRef]
- Gao, Y.-J.; Deng, Q.-Q.; Liu, Z.; Huang, Z.-J.; Li, Y.-X.; Luo, Z.-R. Modes of Grain Growth and Mechanism of Dislocation Reaction under Applied Biaxial Strain: Atomistic and Continuum Modeling. J. Mater. Sci. Technol. 2020, 49, 236–250. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Liao, X.Z.; Wu, X.L. Deformation Twinning in Nanocrystalline Materials. Prog. Mater. Sci. 2012, 57, 1–62. [Google Scholar] [CrossRef]
- Ye, T.; Zhao, F.; Chen, L.; Jiang, K.; Deng, Q.; Chen, Y.; Wang, Q.; Suo, T. Effect of Strain Rate and Low Temperature on Mechanical Behaviour and Microstructure Evolution in Twinning-Induced Plasticity Steel. Mater. Sci. Eng. A 2021, 823, 141734. [Google Scholar] [CrossRef]
- Abbas, M.A.; Hong, S.H.; Yusupov, D.; Kang, G.C.; Choi, J.-W.; Jumaev, E.; Park, H.J.; Kim, K.B. Evolution of Microstructure and Mechanical Properties of a Ti80(CoFeNi)20 Ultrafine Eutectic Composite during Thermal Processing. Intermetallics 2023, 154, 107786. [Google Scholar] [CrossRef]
- Jumaev, E.; Abbas, M.A.; Mun, S.C.; Song, G.; Hong, S.-J.; Kim, K.B. Nano-Scale Structural Evolution of Quaternary AlCrFeNi Based High Entropy Alloys by the Addition of Specific Minor Elements and Its Effect on Mechanical Characteristics. J. Alloys Compd. 2021, 868, 159217. [Google Scholar] [CrossRef]
- Jumaev, E.; Hong, S.H.; Kim, J.T.; Park, H.J.; Kim, Y.S.; Mun, S.C.; Park, J.-Y.; Song, G.; Lee, J.K.; Min, B.H.; et al. Chemical Evolution-Induced Strengthening on AlCoCrNi Dual-Phase High-Entropy Alloy with High Specific Strength. J. Alloys Compd. 2019, 777, 828–834. [Google Scholar] [CrossRef]
- Idrissi, H.; Renard, K.; Schryvers, D.; Jacques, P.J. On the Relationship between the Twin Internal Structure and the Work-Hardening Rate of TWIP Steels. Scr. Mater. 2010, 63, 961–964. [Google Scholar] [CrossRef]
- Zhenli, M.; Di, T.; Aimin, Z.; Haitao, J. Mechanical Properties and Microstructure Evolution During Deformation of Fe–Mn–C TWIP Steel. Steel Res. Int. 2012, 83, 346–351. [Google Scholar] [CrossRef]
- Xu, D.M.; Li, G.Q.; Wan, X.L.; Xiong, R.L.; Xu, G.; Wu, K.M.; Somani, M.C.; Misra, R.D.K. Deformation Behavior of High Yield Strength—High Ductility Ultrafine-Grained 316LN Austenitic Stainless Steel. Mater. Sci. Eng. A 2017, 688, 407–415. [Google Scholar] [CrossRef]
- Curtze, S.; Kuokkala, V.-T.; Oikari, A.; Talonen, J.; Hänninen, H. Thermodynamic Modeling of the Stacking Fault Energy of Austenitic Steels. Acta Mater. 2011, 59, 1068–1076. [Google Scholar] [CrossRef]
- Lee, T.-H.; Shin, E.; Oh, C.-S.; Ha, H.-Y.; Kim, S.-J. Correlation between Stacking Fault Energy and Deformation Microstructure in High-Interstitial-Alloyed Austenitic Steels. Acta Mater. 2010, 58, 3173–3186. [Google Scholar] [CrossRef]
- Tian, Y.; Gorbatov, O.I.; Borgenstam, A.; Ruban, A.V.; Hedström, P. Deformation Microstructure and Deformation-Induced Martensite in Austenitic Fe-Cr-Ni Alloys Depending on Stacking Fault Energy. Met. Mater. Trans. A 2017, 48, 1–7. [Google Scholar] [CrossRef]
- Talonen, J.; Hänninen, H. Formation of Shear Bands and Strain-Induced Martensite during Plastic Deformation of Metastable Austenitic Stainless Steels. Acta Mater. 2007, 55, 6108–6118. [Google Scholar] [CrossRef]
- Lu, J.; Hultman, L.; Holmström, E.; Antonsson, K.H.; Grehk, M.; Li, W.; Vitos, L.; Golpayegani, A. Stacking Fault Energies in Austenitic Stainless Steels. Acta Mater. 2016, 111, 39–46. [Google Scholar] [CrossRef]
- Das, A. Revisiting Stacking Fault Energy of Steels. Met. Mater. Trans. A 2016, 47, 748–768. [Google Scholar] [CrossRef]
- Yonezawa, T.; Suzuki, K.; Ooki, S.; Hashimoto, A. The Effect of Chemical Composition and Heat Treatment Conditions on Stacking Fault Energy for Fe-Cr-Ni Austenitic Stainless Steel. Met. Mater. Trans. A 2013, 44, 5884–5896. [Google Scholar] [CrossRef]
- Wittig, J.E.; Pozuelo, M.; Jiménez, J.A.; Frommeyer, G. Temperature Dependent Deformation Mechanisms of a High Nitrogen-Manganese Austenitic Stainless Steel. Steel Res. Int. 2009, 80, 66–70. [Google Scholar] [CrossRef]
- Karaman, I.; Sehitoglu, H.; Gall, K.; Chumlyakov, Y.I.; Maier, H.J. Deformation of Single Crystal Hadfield Steel by Twinning and Slip. Acta Mater. 2000, 48, 1345–1359. [Google Scholar] [CrossRef]
- Chen, G.; Rahimi, R.; Xu, G.; Biermann, H.; Mola, J. Impact of Al Addition on Deformation Behavior of Fe–Cr–Ni–Mn–C Austenitic Stainless Steel. Mater. Sci. Eng. A 2020, 797, 140084. [Google Scholar] [CrossRef]
- Spencer, K.; Véron, M.; Yu-Zhang, K.; Embury, J.D. The Strain Induced Martensite Transformation in Austenitic Stainless Steels: Part 1—Influence of Temperature and Strain History. Mater. Sci. Technol. 2009, 25, 7–17. [Google Scholar] [CrossRef]
- Das, A.; Sivaprasad, S.; Ghosh, M.; Chakraborti, P.C.; Tarafder, S. Morphologies and Characteristics of Deformation Induced Martensite during Tensile Deformation of 304 LN Stainless Steel. Mater. Sci. Eng. A 2008, 486, 283–286. [Google Scholar] [CrossRef]
- Mirzadeh, H.; Najafizadeh, A. Correlation between Processing Parameters and Strain-Induced Martensitic Transformation in Cold Worked AISI 301 Stainless Steel. Mater. Charact. 2008, 59, 1650–1654. [Google Scholar] [CrossRef]
- Varma, S.K.; Kalyanam, J.; Murk, L.E.; Srinivas, V. Effect of Grain Size on Deformation-Induced Martensite Formation in 304 and 316 Stainless Steels during Room Temperature Tensile Testing. J. Mater. Sci. Lett. 1994, 13, 107–111. [Google Scholar] [CrossRef]
- Poelt, P.; Sommitsch, C.; Mitsche, S.; Walter, M. Dynamic Recrystallization of NI-Base Alloys-Experimental Results and Comparisons with Simulations. Mater. Sci. Eng. A 2006, 420, 306–314. [Google Scholar] [CrossRef]
- Mandal, S.; Bhaduri, A.K.; Sarma, V.S. Influence of State of Stress on Dynamic Recrystallization in a Titanium-Modified Austenitic Stainless Steel. Metall. Mater. Trans. A 2012, 43, 410–414. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, Z.; Gao, Z.; Liu, D. Continuous Dynamic Recrystallization Nucleation Mechanism and Annealing Twin Evolution with Respect to Grain Growth in a Nickel-Based Superalloy. J. Cent. South Univ. 2023, 30, 49–60. [Google Scholar] [CrossRef]
- Hung, C.-Y.; Bai, Y.; Tsuji, N.; Murayama, M. Grain Size Altering Yielding Mechanisms in Ultrafine Grained High-Mn Austenitic Steel: Advanced TEM Investigations. J. Mater. Sci. Technol. 2021, 86, 192–203. [Google Scholar] [CrossRef]
- Lee, S.-I.; Lee, S.-Y.; Han, J.; Hwang, B. Deformation Behavior and Tensile Properties of an Austenitic Fe-24Mn-4Cr-0.5C High-Manganese Steel: Effect of Grain Size. Mater. Sci. Eng. A 2019, 742, 334–343. [Google Scholar] [CrossRef]
- Ma, D.; Yang, P.; Gu, X.; Cui, F. Influences of Initial Microstructures on Martensitic Transformation and Textures during Cold Rolling and Tensile Mechanical Properties in High Manganese TRIP Steel. Mater. Sci. Eng. A 2022, 829, 142147. [Google Scholar] [CrossRef]
- Wang, H.; Sun, X.; Yang, P.; Mao, W.; Meng, L. Analysis of the Transformation-Induced Plasticity Effect during the Dynamic Deformation of High-Manganese Steel. J. Mater. Sci. Technol. 2015, 31, 191–198. [Google Scholar] [CrossRef]
- Nezakat, M.; Akhiani, H.; Sabet, S.M.; Szpunar, J. Electron Backscatter and X-Ray Diffraction Studies on the Deformation and Annealing Textures of Austenitic Stainless Steel 310S. Mater. Charact. 2017, 123, 115–127. [Google Scholar] [CrossRef]
- Sevsek, S.; Brasche, F.; Molodov, D.A.; Bleck, W. On the Influence of Grain Size on the TWIP/TRIP-Effect and Texture Development in High-Manganese Steels. Mater. Sci. Eng. A 2019, 754, 152–160. [Google Scholar] [CrossRef]
- Pei, W.; Zhang, Y.; Yang, S.; Li, X.; Zhao, A. Study of Work-Hardening Behavior of High Manganese Steel during Compression. Mater. Res. Express 2022, 9, 066503. [Google Scholar] [CrossRef]
- Xie, P.; Shen, S.; Wu, C.; Chen, J. Abnormal Orientation Relation between Fcc and Hcp Structures Revealed in a Deformed High Manganese Steel. J. Mater. Sci. Technol. 2021, 60, 156–161. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, W.; Yang, S.; Cao, K.; Zhao, A. Effect of Annealing Temperature on Mechanical Properties and Work Hardening of Nickel-Saving Stainless Steel. Materials 2023, 16, 3988. https://doi.org/10.3390/ma16113988
Pei W, Yang S, Cao K, Zhao A. Effect of Annealing Temperature on Mechanical Properties and Work Hardening of Nickel-Saving Stainless Steel. Materials. 2023; 16(11):3988. https://doi.org/10.3390/ma16113988
Chicago/Turabian StylePei, Wei, Shaoguang Yang, Kuo Cao, and Aimin Zhao. 2023. "Effect of Annealing Temperature on Mechanical Properties and Work Hardening of Nickel-Saving Stainless Steel" Materials 16, no. 11: 3988. https://doi.org/10.3390/ma16113988
APA StylePei, W., Yang, S., Cao, K., & Zhao, A. (2023). Effect of Annealing Temperature on Mechanical Properties and Work Hardening of Nickel-Saving Stainless Steel. Materials, 16(11), 3988. https://doi.org/10.3390/ma16113988