The Effect of a DC Magnetic Field on the AC Magnetic Properties of Oleic Acid-Coated Fe3O4 Nanoparticles
Abstract
:1. Introduction
1.1. Superparamagnetism
1.2. Presence of Double TB in Literature
1.3. Analysis of a System Having Double TB
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterisation Techniques
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mørup, S.; Frandsen, C.; Hansen, M.F. Magnetic Properties of Nanoparticles; Narlikar, A.V., Fu, Y.Y., Eds.; Oxford University Press: Oxford, UK, 2010; Volume 1, ISBN 0199533059. [Google Scholar] [CrossRef]
- Ganapathe, L.S.; Mohamed, M.A.; Mohamad Yunus, R.; Berhanuddin, D.D. Magnetite (Fe3O4) Nanoparticles in biomedical application: From synthesis to surface functionalisation. Magnetochemistry 2020, 6, 68. [Google Scholar] [CrossRef]
- Bloemen, M.; Brullot, W.; Luong, T.T.; Geukens, N.; Gils, A.; Verbiest, T. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications. J. Nanoparticle Res. 2012, 14, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Li, C.; Ma, P.; Chen, Y.; Zhang, Y.; Hou, Z.; Huang, S.; Lin, J. Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery. Nanoscale 2015, 7, 1839–1848. [Google Scholar] [CrossRef]
- Kumar, C.S.S.R.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 789–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hergt, R.; Dutz, S.; Müller, R.; Zeisberger, M. Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter 2006, 18, S2919–S2934. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Sun, S. Synthesis and assembly of magnetic nanoparticles for information and energy storage applications. Front. Phys. China 2010, 5, 347–356. [Google Scholar] [CrossRef]
- Frey, N.A.; Peng, S.; Cheng, K.; Sun, S. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 2009, 38, 2532. [Google Scholar] [CrossRef] [Green Version]
- Linh, P.H.; Van Thach, P.; Tuan, N.A.; Thuan, N.C.; Manh, D.H.; Phuc, N.X.; Van Hong, L. Magnetic fluid based on Fe3O4 nanoparticles: Preparation and hyperthermia application. J. Phys. Conf. Ser. 2009, 187, 012069. [Google Scholar] [CrossRef] [Green Version]
- Camp, P.J.; Ivanov, A.O.; Sindt, J.O. How chains and rings affect the dynamic magnetic susceptibility of a highly clustered ferrofluid. Phys. Rev. E 2021, 103, 062611. [Google Scholar] [CrossRef]
- Ivanov, A.S.; Solovyova, A.Y.; Zverev, V.S.; Elfimova, E.A. Distribution functions of magnetic moments and relaxation times for magnetic fluids exhibiting controllable microstructure evolution. J. Mol. Liq. 2022, 367, 120550. [Google Scholar] [CrossRef]
- Marghussian, V. Magnetic Properties of Nano-Glass Ceramics; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780323353861. [Google Scholar] [CrossRef]
- Bean, C.P.; Livingston, J.D. Superparamagnetism. J. Appl. Phys. 1959, 30, S120–S129. [Google Scholar] [CrossRef]
- Micha, J.S.; Dieny, B.; Régnard, J.R.; Jacquot, J.F.; Sort, J. Estimation of the Co nanoparticles size by magnetic measurements in Co/SiO2 discontinuous multilayers. J. Magn. Magn. Mater. 2004, 272–276, E967–E968. [Google Scholar] [CrossRef]
- Hansen, M.F.; Jönsson, P.E.; Nordblad, P.; Svedlindh, P. Critical dynamics of an interacting magnetic system. J. Phys. Condens. Matter 2002, 14, 4901. [Google Scholar] [CrossRef]
- Milosevic, I.; Motte, L.; Aoun, B.; Li, T.; Ren, Y.; Sun, C.; Saboungi, M.L. Effects of coating spherical iron oxide nanoparticles. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 3621–3626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, M.S. Nanoparticle magnetism: Superspin glasses. J. Nanosci. Nanotechnol. 2019, 19, 4903–4910. [Google Scholar] [CrossRef] [PubMed]
- Dormann, J.L.; Bessais, L.; Fiorani, D. A dynamic study of small interacting particles: Superparamagnetic model and spin-glass laws. J. Phys. C Solid State Phys. 1988, 21, 2015. [Google Scholar] [CrossRef]
- Abdolrahimi, M.; Vasilakaki, M.; Slimani, S.; Ntallis, N.; Varvaro, G.; Laureti, S.; Meneghini, C.; Trohidou, K.N.; Fiorani, D.; Peddis, D. Magnetism of nanoparticles: Effect of the organic coating. Nanomaterials 2021, 11, 1787. [Google Scholar] [CrossRef]
- Polichetti, M.; Modestino, M.; Galluzzi, A.; Pace, S.; Iuliano, M.; Ciambelli, P.; Sarno, M. Influence of Citric acid and oleic acid coating on the Dc magnetic properties of Fe3O4 magnetic nanoparticles. Mater. Today Proc. 2020, 20, 21–24. [Google Scholar] [CrossRef]
- Urian, Y.A.; Atoche-Medrano, J.J.; Quispe, L.T.; León Félix, L.; Coaquira, J.A.H. Study of the surface properties and particle-particle interactions in oleic acid-coated Fe3O4 nanoparticles. J. Magn. Magn. Mater. 2021, 525, 167686. [Google Scholar] [CrossRef]
- Goya, G.F.; Lima, E.; Arelaro, A.D.; Torres, T.; Rechenberg, H.R.; Rossi, L.; Marquina, C.; Ibarra, M.R. Magnetic hyperthermia with Fe3O4 nanoparticles: The influence of particle size on energy absorption. IEEE Trans. Magn. 2008, 44, 4444–4447. [Google Scholar] [CrossRef]
- Echevarria-Bonet, C.; Rojas, D.P.; Espeso, J.I.; Rodriguez Fernández, J.; de La Fuente Rodriguez, M.; Fernández Barquin, L.; Rodriguez Fernández, L.; Gorria, P.; Blanco, J.A.; Fdez-Gubieda, M.L.; et al. Magnetic phase diagram of superantiferromagnetic TbCu₂ nanoparticles. J. Phys. Condens. Matter 2015, 27, 496002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goya, G.F.; Morales, M.P.; Sugiura, N. Field dependence of blocking temperature in magnetite nanoparticles. Metastable Mech. Alloy. Nanocrystalline Mater. 2004, 20, 673–678. [Google Scholar] [CrossRef] [Green Version]
- Topping, C.V.; Blundell, S.J. A.C. susceptibility as a probe of low-frequency magnetic dynamics. J. Phys. Condens. Matter 2018, 31, 013001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Jang, J.T.; Nakano, H.; Nakagawa, S.; Paek, S.H.; Bae, S. External magnetic field dependent shift of superparamagnetic blocking temperature due to core/surface disordered spin interactions. Nanotechnology 2017, 28, 075710. [Google Scholar] [CrossRef] [PubMed]
- Cimberle, M.R.; Masini, R.; Canepa, F.; Costa, G.; Vecchione, A.; Polichetti, M.; Ciancio, R. Ferromagnetic nanoclusters observed by Ac and Dc magnetic measurements in RuSr2GdCu2O8 samples. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 73, 214424. [Google Scholar] [CrossRef]
- Ramos-Guivar, J.A.; Litterst, F.J.; Passamani, E.C. AC susceptibility studies under DC fields in superspinglass nanomaghemite-multiwall carbon nanotube hybrid. Magnetochemistry 2021, 7, 52. [Google Scholar] [CrossRef]
- Dormann, J.L.; Fiorani, D.; el Yamani, M. Field dependence of the blocking temperature in the superparamagnetic model: Coincidence. Phys. Lett. A 1987, 120, 95–99. [Google Scholar] [CrossRef]
- Chantrell, R.W.; O’Grady, K. The magnetic properties of fine particles. In Applied Magnetism; Springer: Berlin/Heidelberg, Germany, 1994; pp. 113–164. [Google Scholar] [CrossRef]
- Mydosh, J.A. Spin Glasses: An Experimental Introduction, 1st ed.; Taylor & Francis: Abingdon, UK, 1993. [Google Scholar]
- Ali, A.; Shah, T.; Ullah, R.; Zhou, P.; Guo, M.; Ovais, M.; Tan, Z.; Rui, Y.K. Review on recent progress in magnetic nanoparticles: Synthesis, characterization, and diverse applications. Front. Chem. 2021, 9, 548. [Google Scholar] [CrossRef]
- Sarno, M.; Iuliano, M.; Polichetti, M.; Ciambelli, P. High activity and selectivity immobilized lipase on Fe3O4 nanoparticles for banana flavour synthesis. Process. Biochem. 2017, 56, 98–108. [Google Scholar] [CrossRef]
- Iannone, G.; Zola, D.; Armenio, A.A.; Polichetti, M.; Attanasio, C. Electrical resistivity and magnetic behavior of PdNi and CuNi thin films. Phys. Rev. B. Condens. Matter Mater. Phys. 2007, 75, 064409. [Google Scholar] [CrossRef]
- Galluzzi, A.; Nigro, A.; Fittipaldi, R.; Guarino, A.; Pace, S.; Polichetti, M. DC Magnetic characterization and pinning analysis on Nd1.85Ce0.15CuO4 cuprate superconductor. J. Magn. Magn. Mater. 2019, 475, 125–129. [Google Scholar] [CrossRef]
- Mamiya, H.; Nakatani, I. Dynamic study of iron-nitride fine particle system: Field dependence of the blocking temperature. J. Magn. Magn. Mater. 1998, 177–181, 966–967. [Google Scholar] [CrossRef]
- Suzuki, M.; Fullem, S.I.; Suzuki, I.S.; Wang, L.; Zhong, C.J. Observation of superspin-glass behavior in Fe3O4 nanoparticles. Phys. Rev. B. Condens. Matter Mater. Phys. 2009, 79, 024418. [Google Scholar] [CrossRef]
- Tanwar, S.; Awana, V.P.S.; Singh, S.P.; Pasricha, R. Magnetic field dependence of blocking temperature in oleic acid functionalized iron oxide nanoparticles. J. Supercond. Nov. Magn. 2012, 25, 2041–2045. [Google Scholar] [CrossRef]
- Mustapić, M.; Pajić, D.; Novosel, N.; Babić, E.; Zadro, K.; Cindrić, M.; Horvat, J.; Skoko, Ž.; Bijelić, M.; Shcherbakov, A. Synthesis, structural characterization and magnetic properties of iron boride nanoparticles with or without silicon dioxide coating. Croat. Chem. Acta 2010, 83, 275–282. [Google Scholar]
- Pajić, D.; Zadro, K.; Ristić, R.; Ivković, I.; Skoko, Ž.; Babić, E. Thermal relaxation of magnetic clusters in amorphous alloy. J. Phys. Condens. Matter 2007, 19, 296207. [Google Scholar] [CrossRef] [Green Version]
- Pajić, D.; Marohnić, Ž.; Drobac, D.; Zadro, K.; Ristić, R.; Babić, E. Evolution of magnetism in Hf–Fe metallic glasses. J. Alloys Compd. 2012, 536, S370–S373. [Google Scholar] [CrossRef]
- Bitoh, T.; Ohba, K.; Takamatsu, M.; Shirane, T.; Chikazawa, S. Linear and nonlinear susceptibilities in Cu97Co3 alloy for ferromagnetic fine particles in metallic matrix: Comparison with spin glass Au96Fe4 alloy. J. Phys. Soc. Jpn. 2013, 62, 2583–2586. [Google Scholar] [CrossRef]
- Aslani, A.; Ghahremani, M.; Zhang, M.; Bennett, L.H.; della Torre, E. Customizing magnetic and structural properties of nanomaterials. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Sappey, R.; Vincent, E.; Hadacek, N.; Chaput, F.; Boilot, J. Nonmonotonic field dependence of the zero-field cooled magnetization peak in some systems of magnetic nanoparticles. Phys. Rev. B 1997, 56, 14551. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Nagel, S.R.; Rosenbaum, T.F.; Rosensweig, R.E. Dipole interactions with random anisotropy in a frozen ferrofluid. Phys. Rev. Lett. 1991, 67, 2721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, R.K.; Gu, H.; Xu, B.; Zhang, X.X. The origin of the non-monotonic field dependence of the blocking temperature in magnetic nanoparticles. J. Phys. Condens. Matter 2006, 18, 5905–5910. [Google Scholar] [CrossRef]
- Bruvera, I.J.; Mendoza Zélis, P.; Pilar Calatayud, M.; Goya, G.F.; Sánchez, F.H. Determination of the blocking temperature of magnetic nanoparticles: The good, the bad, and the ugly. J. Appl. Phys. 2015, 118, 184304. [Google Scholar] [CrossRef]
- Wenger, L.E.; Mydosh, J.A. Nonuniqueness of H2/3 and H2 field-temperature transition lines in spin-glasses. Phys. Rev. B 1984, 29, 4156. [Google Scholar] [CrossRef]
- El-Hilo, M.; O’Grady, K.; Chantrell, R.W. Susceptibility phenomena in a fine particle system: II. Field dependence of the peak. J. Magn. Magn. Mater. 1992, 114, 307–313. [Google Scholar] [CrossRef]
Fit Parameter | T1 (HDC) Fitting | T2 (HDC) Fitting |
---|---|---|
T0 | (40.07 ± 0.02) K | (267 ± 2) K |
Hk | (2200 ± 100) Oe | (3900 ± 200) Oe |
p | 2.03 ± 0.11 | 0.65 ± 0.03 |
Adjust R-Square | 0.9978 | 0.99965 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modestino, M.; Galluzzi, A.; Sarno, M.; Polichetti, M. The Effect of a DC Magnetic Field on the AC Magnetic Properties of Oleic Acid-Coated Fe3O4 Nanoparticles. Materials 2023, 16, 4246. https://doi.org/10.3390/ma16124246
Modestino M, Galluzzi A, Sarno M, Polichetti M. The Effect of a DC Magnetic Field on the AC Magnetic Properties of Oleic Acid-Coated Fe3O4 Nanoparticles. Materials. 2023; 16(12):4246. https://doi.org/10.3390/ma16124246
Chicago/Turabian StyleModestino, Michele, Armando Galluzzi, Maria Sarno, and Massimiliano Polichetti. 2023. "The Effect of a DC Magnetic Field on the AC Magnetic Properties of Oleic Acid-Coated Fe3O4 Nanoparticles" Materials 16, no. 12: 4246. https://doi.org/10.3390/ma16124246
APA StyleModestino, M., Galluzzi, A., Sarno, M., & Polichetti, M. (2023). The Effect of a DC Magnetic Field on the AC Magnetic Properties of Oleic Acid-Coated Fe3O4 Nanoparticles. Materials, 16(12), 4246. https://doi.org/10.3390/ma16124246