Fire Retardant Phase Change Materials—Recent Developments and Future Perspectives
Abstract
:1. Introduction
2. Flame Retardants
3. PCMs Flame Retardation Methods
- incorporation into bulk PCM-FR is directly incorporated and mixed with PCM; this strategy allows for reducing the flammability of bulk PCMs such as paraffin and fatty acids; however, phase separation can occur and material still needs to be shape stabilized or encapsulated;
- insertion of FRs into the PCM matrix—FR is incorporated into the polymer matrix that is applied for PCM shape stabilization (e.g., high-density polyethylene, epoxy resin, polyurethane foam);
- FR is incorporated into the polymer shells and PCM is closed inside the capsules, or FR is located in the microcapsules and then dispersed in bulk PCM;
- flame retardancy of shape-stabilized phase change materials (SSPCMs) by surface coating—shape-stabilized PCMs are surface coated by the flame retardant system.
4. Flame-Retarded PCMs
PCM | Flame Retardants | Latent Heat J/g (MP °C) | Mass Residue % (Temp.) | Total HR (MJ/m2) | Peak HRR (kW/m2) | LOI | Ignition Time (s) | Ref. |
---|---|---|---|---|---|---|---|---|
paraffin/HDPE | organophilic montmorillonite + pentaerythritol + melamine phosphate | 54.58 (~55) | ~10 (700) | 80.06 | 296.7 | N/A | 36 | [18] |
paraffin/HDPE | expandable graphite + ammonium polyphosphate | 93.84 (55.43) | ~17 (700) | N/A | 85.8 | N/A | N/A | [19] |
paraffin/HDPE | expanded graphite + IFR (ammonium polyphosphate, pentaerythritol, melamine) | 73.6 (50.58) | ~18 (350) | 81 | 430.36 | N/A | 38 | [20] |
parafin/HDPE | iron + IFR (ammonium polyphosphate, pentaerythritol, melamine) | 71.15 (~55) | N/A | 83.7 | 274.03 | N/A | 30 | [21] |
paraffin/EPDM | nanostructured magnesium hydroxide + red phosphorus | 53.57 (55.96) | ~27 (700) | N/A | N/A | 24 | N/A | [22] |
paraffin | tri-(triethoxysilylpropyl) phosphamide | 74.27 (53.01) | 32.4 (600) | N/A | 276 W/g | N/A | N/A | [23] |
the eutectic mixtures of solid and liquid paraffins with polypropylene | triazine char-forming agent + ammonium polyphosphate | 126.8 (24.8) | 18.8 (600) | 68.3 | 135.9 | 32.8 | 7 | [24] |
paraffin | expanded graphite + ammonium phosphate | 83 (20.2) | N/A | N/A | N/A | N/A | 25 | [25] |
paraffin/HDPE | expanded graphite + magnesium hydroxide + aluminium hydroxide | 35.8 (68) | 26.2 (600) | 103.0 | 655.9 | N/A | 38 | [26] |
paraffin | expanded graphite/acrylic resin | N/A | 19 | 122 | 392.5 | 31.8 | N/A | [27] |
paraffin | expanded graphite + ammonium polyphosphate + carbon-forming agent + kaolinite | 81.2 | 27.2 (600) | 89.3 | 313.1 | 37.6 | N/A | [28] |
paraffin | expanded graphite + ammonium polyphosphate + carbon forming agent + kaolinit | 121 (57.28) | 22.3 (800) | N/A | N/A | 31.1 | N/A | [29] |
palmitic acid | melamine | 85.11 (62.58) | 23.92 (700) | N/A | N/A | N/A | N/A | [30] |
1-tetradecanol 1-hexadecanol 1-octadecanol | phosphorus and silicon—synergistic | 81.5 (29.27) 107.4 (44.61) 116.9 (52.88) | 18.0 15.8 16.3 | N/A | N/A | N/A | N/A | [31] |
capric acid + myristic acid capric acid + palmitic acid | hydromagnesite | 53 (22) 56 (19) | N/A | N/A | N/A | N/A | 14 9 | [32] |
capric acid + myristic acid capric acid + palmitic acid | magnesium hydroxide | 55 (24.4) 55 (23) | N/A | N/A | N/A | N/A | 24 32 | |
phosphorus-grafted hexadecanol | pentaerythritol phosphate | 148.4 | 19.8 (800) | 125.2 | 679.2 | N/A | 142 | [33] |
stearic acid | nano magnesium hydroxide + graphite powder | 110.05 (85) | N/A | N/A | N/A | N/A | 5 | [34] |
lauric acid | resorcinol bis(diphenyl phosphate) + expanded perlite | 86.02 | 38.8 (500) | 10.82 | 324 | N/A | 8 | [35] |
capric acid | halloysite nanotube modified by DOPO | 113.52 (32.95) | 24 (600) | 93.95 | 572.65 | N/A | N/A | [36] |
PEG | organosiloxane (tri-(triethoxysilylpropyl) phosphamide) | 124.7 (56.4) | 13.5 (600) | N/A | N/A | N/A | N/A | [37] |
PEG-based PU | tetrabromobisphenol-A + decabrominated-dipheny ethane | 86.69 (56.3) | 4.6 (650) | N/A | N/A | 21.03 | N/A | [38] |
wood flour supported PEG | expandable graphite | 32.2 (60.2) | 24 (800) | 99 | 188 | 30.5 | N/A | [39] |
PEG-based PU | dopamine-decorated black phosphorus nanosheets | 127.3 (52.3) | 6.14 (700) | 19.2 kJ/g | 442.3 W/g | 24.3 | N/A | [40] |
PEG/epoxy resin | expanded graphite + magnesium hydroxide + zinc hydroxide | N/A | 26.69 (600) | 119.4 | 501.3 | 29.01 | N/A | [41] |
PEG-based PU | tri-maleimide end-capped cyclotriphosphazene | 81.5 (51.1) | 5.75 (600) | 17.29 kJ/g | 362.8 W/g | 23.9 | N/A | [42] |
PEG | polyvinyl formal | 145.2 (55.79) | ~5 (600) | N/A | N/A | N/A | N/A | [43] |
PEG | MXene/PI aerogels | 167.9 (62) | 3.3 (800) | 21.4 kJ/g | 529.3 W/g | N/A | N/A | [44] |
polyrotaxane | biomass phytic acid | 60.9 | 16.5 (600) | 44 | 298 | 28.02 | N/A | [45] |
PEG + N,N’-Methylenebisacrylamide | microcapsule-coated ammonium polyphosphate + expanded graphite | 76.34 | ~22 (700) | 60.09 | 452.23 | 32.6 | 85 | [46] |
n-eicosane/gelatin +sodium alginate | clay nanoparticles | 97.08 (35.57) | 19.37 (400) | N/A | N/A | N/A | N/A | [47] |
n-octadecane/PMMA | diethyl bis(2-hydroxyethyl acrylate)amino methylphosphonate (DEAMP) | 109.1 (32) | 13.7 (900) | 204.9 | 501.4 | 25.01 | N/A | [48] |
n-octacosane/cellulose nanofiber | (2D)-layered black phosphorus (BP) nanosheets | 251.6 (66) | 5.47 (700) | 37.21 kJ/g | 621.2 W/g | 23.9 | N/A | [49] |
octadecane + SiO2 shell | tributylphosphate | 124.6 (28.1) | 15 (400) | 30.2 kJ/g | 460.9 W/g | N/A | N/A | [50] |
1-octadecane | biobased magnesium phytate | 118.0 (60.1) | 28.1 (700) | 53.1 | 761 | 21.6 | N/A | [51] |
4.1. Modified Flame-Retarded Paraffins
4.2. Modified Flame-Retarded Fatty Acids and Alcohols
4.3. Modified Flame-Retarded Polymers
5. Applications of Flame-Retarded PCMs
6. Conclusions and Future Outlooks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APP | ammonium polyphosphate |
ATH | aluminum hydroxide |
BP | black phosphorus |
CA | capric acid |
CFA | carbon-forming agent |
DEAMP | diethyl bis(2-hydroxyethyl acrylate)amino methylphosphonate |
DSC | differential scanning calorimetry |
DOPO | 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide |
EG | expandable/expanded graphite |
EP | expanded perlite |
EPDM | ethylene propylene diene terpolymer |
ER | epoxy resin |
EVs | electric vehicles |
FRs | flame retardants |
FRPCM | flame-retarded composite phase change material |
FSPCMs | flame retardant shape-stabilized phase change materials |
GP | graphite powder |
HDPE | high-density polyethylene |
HFRs | halogenated flame retardants |
HNT | halloysite nanotubes |
IFR | intumescent flame retardants |
LA | lauric acid |
LOI | limiting oxygen index |
MA | myristic acid |
MH | magnesium hydroxide |
MPP | melamine polyphosphate |
OMMT | organophilic montmorillonite |
PA | palmitic acid/phytic acid |
PCMs | phase change materials |
PEPA | pentaerythritol phosphate |
PER | pentaerythritol |
PET | poly (ethylene terephthalate) |
PHRR | peak heat release rate |
PI | polyimide |
PLR | polyrotaxane |
PMMA | poly(methyl methacrylate) |
POSS | polyhedral oligomeric silsesquioxanes |
PP | polypropylene |
PU | polyurethane |
PVF | poly(vinyl formal) |
RDP | resorcinol bis(diphenyl phosphate) |
RP | red phosphorus |
SBS | styrene-butadiene-styrene copolymer |
SEM | scanning electron microscopy |
SSPCMs | shape stabilized phase change materials |
TES | thermal energy storage |
TGA | thermogravimetric analysis |
THRR | total heat release rate |
WF | wood flour |
References
- Xu, J.; Zhang, X.; Zou, L. A Review: Progress and Perspectives of Research on the Functionalities of Phase Change Materials. J. Energy Storage 2022, 54, 105341. [Google Scholar] [CrossRef]
- Yang, A.-S.; Cai, T.-Y.; Su, L.; Li, Y.-S.; He, F.-F.; Zhang, Q.-P.; Zhou, Y.-L.; He, R.; Zhang, K.; Yang, W.-B. Review on Organic Phase Change Materials for Sustainable Energy Storage. Sustain. Energy Fuels 2022, 6, 5045–5071. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. (Eds.) Multifunctional Phase Change Materials; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. Phase Change Materials for Thermal Energy Storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Zalba, B.; Marín, J.M.; Cabeza, L.F.; Mehling, H. Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Qiu, J.; Huo, D.; Xia, Y. Phase-Change Materials for Controlled Release and Related Applications. Adv. Mater. 2020, 32, 2000660. [Google Scholar] [CrossRef]
- Sittisart, P.; Farid, M.M. Fire Retardants for Phase Change Materials. Appl. Energy 2011, 88, 3140–3145. [Google Scholar] [CrossRef]
- Wang, M.; Yin, G.Z.; Yang, Y.; Fu, W.; Díaz Palencia, J.L.; Zhao, J.; Wang, N.; Jiang, Y.; Wang, D.Y. Bio-Based Flame Retardants to Polymers: A Review. Adv. Ind. Eng. Polym. Res. 2022, 6, 132–155. [Google Scholar] [CrossRef]
- Png, Z.M.; Soo, X.Y.D.; Chua, M.H.; Ong, P.J.; Suwardi, A.; Tan, C.K.I.; Xu, J.; Zhu, Q. Strategies to Reduce the Flammability of Organic Phase Change Materials: A Review. Sol. Energy. 2022, 231, 115–128. [Google Scholar] [CrossRef]
- Mensah, R.A.; Shanmugam, V.; Narayanan, S.; Renner, J.S.; Babu, K.; Neisiany, R.E.; Försth, M.; Sas, G.; Das, O. A Review of Sustainable and Environment-Friendly Flame Retardants Used in Plastics. Polym. Test. 2022, 108, 107511. [Google Scholar] [CrossRef]
- Liu, B.-W.; Zhao, H.-B.; Wang, Y.-Z. Advanced Flame-Retardant Methods for Polymeric Materials. Adv. Mater. 2022, 34, 2107905. [Google Scholar] [CrossRef]
- Hull, T.R.; Witkowski, A.; Hollingbery, L. Fire Retardant Action of Mineral Fillers. Polym. Degrad. Stab. 2011, 96, 1462–1469. [Google Scholar] [CrossRef] [Green Version]
- Vahidi, G.; Bajwa, D.S.; Shojaeiarani, J.; Stark, N.; Darabi, A. Advancements in Traditional and Nanosized Flame Retardants for Polymers—A Review. J. Appl. Polym. Sci. 2021, 138, 50050. [Google Scholar] [CrossRef]
- Didane, N.; Giraud, S.; Devaux, E.; Lemort, G. A Comparative Study of POSS as Synergists with Zinc Phosphinates for PET Fire Retardancy. Polym. Degrad. Stab. 2012, 97, 383–391. [Google Scholar] [CrossRef]
- Isitman, N.A.; Kaynak, C. Nanoclay and Carbon Nanotubes as Potential Synergists of an Organophosphorus Flame-Retardant in Poly(Methyl Methacrylate). Polym. Degrad. Stab. 2010, 95, 1523–1532. [Google Scholar] [CrossRef]
- Karbhari, V.M. (Ed.) Durability of Composites for Civil Structural Applications; Woodhead Publishing: Sawston, UK, 2007. [Google Scholar]
- Koronis, G.; Silva, A. (Eds.) Green Composites for Automotive Applications; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Cai, Y.; Hu, Y.; Song, L.; Kong, Q.; Yang, R.; Zhang, Y.; Chen, Z.; Fan, W. Preparation and Flammability of High Density Polyethylene/Paraffin/Organophilic Montmorillonite Hybrids as a Form Stable Phase Change Material. Energy Convers. Manag. 2007, 48, 462–469. [Google Scholar] [CrossRef]
- Cai, Y.; Wei, Q.; Huang, F.; Gao, W. Preparation and Properties Studies of Halogen-Free Flame Retardant Form-Stable Phase Change Materials Based on Paraffin/High Density Polyethylene Composites. Appl. Energy 2008, 85, 765–775. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, Y.; Song, L.; Ni, J.; Xing, W.; Wang, J. Effect of Expanded Graphite on Properties of High-Density Polyethylene/Paraffin Composite with Intumescent Flame Retardant as a Shape-Stabilized Phase Change Material. Sol. Energy Mater. Sol. Cells 2010, 94, 360–365. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, Y.; Song, L.; Lu, H.; Wang, J.; Liu, Q. Synergistic Effect of Iron and Intumescent Flame Retardant on Shape-Stabilized Phase Change Material. Thermochim. Acta 2009, 487, 74–79. [Google Scholar] [CrossRef]
- Song, G.; Ma, S.; Tang, G.; Yin, Z.; Wang, X. Preparation and Characterization of Flame Retardant Form-Stable Phase Change Materials Composed by EPDM, Paraffin and Nano Magnesium Hydroxide. Energy 2010, 35, 2179–2183. [Google Scholar] [CrossRef]
- Qian, Y.; Wei, P.; Jiang, P.; Liu, J. Preparation of Halogen-Free Flame Retardant Hybrid Paraffin Composites as Thermal Energy Storage Materials by in-Situ Sol-Gel Process. Sol. Energy Mater. Sol Cells 2012, 107, 13–19. [Google Scholar] [CrossRef]
- Li, L.; Wang, G.; Guo, C. Influence of Intumescent Flame Retardant on Thermal and Flame Retardancy of Eutectic Mixed Paraffin/Polypropylene Form-Stable Phase Change Materials. Appl. Energy 2016, 162, 428–434. [Google Scholar] [CrossRef]
- Palacios, A.; de Gracia, A.; Cabeza, L.F.; Julià, E.; Fernández, A.I.; Barreneche, C. New Formulation and Characterization of Enhanced Bulk-Organic Phase Change Materials. Energy Build 2018, 167, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Ming, Z.; He, J.; Ding, Y.; Jiang, J. Effect of Magnesium Hydroxide and Aluminum Hydroxide on the Thermal Stability, Latent Heat and Flammability Properties of Paran/HDPE Phase Change Blends. Polymers 2020, 12, 180. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Liu, X.; Yang, R. Flame Retardant Paraffin-Based Shape-Stabilized Phase Change Material via Expandable Graphite-Based Flame-Retardant Coating. Molecules 2020, 25, 2408. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Zhang, G.; Wu, H.; Rao, Z.; Guo, J.; Zhou, D. Experimental Investigation of the Flame Retardant and Form-Stable Composite Phase Change Materials for a Power Battery Thermal Management System. J Power Sources 2020, 480, 229116. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, Y.; Zhao, L.; Zhu, F.; Li, L.; Kong, Q.; Chen, M. Investigation on the Properties of Flame-Retardant Phase Change Material and Its Application in Battery Thermal Management. Energies 2023, 16, 521. [Google Scholar] [CrossRef]
- Fang, G.; Li, H.; Chen, Z.; Liu, X. Preparation and Properties of Palmitic Acid/SiO2 Composites with Flame Retardant as Thermal Energy Storage Materials. Sol. Energy Mater. Sol. Cells 2011, 95, 1875–1881. [Google Scholar] [CrossRef]
- Jiang, Y.; Yan, P.; Wang, Y.; Zhou, C.; Lei, J. Form-Stable Phase Change Materials with Enhanced Thermal Stability and Fire Resistance via the Incorporation of Phosphorus and Silicon. Mater. Des. 2018, 160, 763–771. [Google Scholar] [CrossRef]
- Palacios, A.; De Gracia, A.; Haurie, L.; Cabeza, L.F.; Fernández, A.I.; Barreneche, C. Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form. Materials 2018, 11, 117. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Huang, X.; Zheng, R.; Xie, D.; Mei, Y.; Zou, R. Flame-Retardancy and Thermal Properties of a Novel Phosphorus-Modified PCM for Thermal Energy Storage. Chem. Eng. J. 2020, 380, 122500. [Google Scholar] [CrossRef]
- Han, K.T.; Lhosupasirirat, S.; Srikhirin, P.; Houngkamhang, N.; Srikhirin, T. Development of Flame Retardant Stearic Acid Doped Graphite Powder and Magnesium Hydroxide Nanoparticles, Material for Thermal Energy Storage Applications. J. Phys. Confe. Ser. 2022, 2175, 012043. [Google Scholar] [CrossRef]
- Alkhazaleh, A.H.; Almanaseer, W.; Alkhazali, A. Experimental Investigation on Thermal Properties and Fire Performance of Lauric Acid/Diphenyl Phosphate/Expanded Perlite as a Flame Retardant Phase Change Material for Latent Heat Storage Applications. Sustain. Energy Technol. Assess. 2023, 56, 103059. [Google Scholar] [CrossRef]
- Cheng, J.; Kang, M.; Lin, W.; Liang, C.; Liu, Y.; Wang, Y.; Niu, S.; Zhang, F. Preparation and Characterization of Phase Change Material Microcapsules with Modified Halloysite Nanotube for Controlling Temperature in the Building. Constr. Build. Mater. 2023, 362, 129764. [Google Scholar] [CrossRef]
- Qian, Y.; Wei, P.; Jiang, P.; Li, Z.; Yan, Y.; Liu, J. Preparation of a Novel PEG Composite with Halogen-Free Flame Retardant Supporting Matrix for Thermal Energy Storage Application. Appl. Energy 2013, 106, 321–327. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, B.; Wang, L.; Lu, R.; Zhao, D.; Zhang, S. Novel Hybrid Form-Stable Polyether Phase Change Materials with Good Fire Resistance. Energy Storage Mater. 2017, 6, 46–52. [Google Scholar] [CrossRef]
- Guo, C.; Chen, Y.; Li, L. Investigation on Interfacial Interaction and Thermal Properties of Flame Retarded Wood-Plastic Form-Stable Phase Change Material. Compos. Interfaces 2019, 26, 597–610. [Google Scholar] [CrossRef]
- Du, X.; Qiu, J.; Deng, S.; Du, Z.; Cheng, X.; Wang, H. Flame-Retardant and Solid-Solid Phase Change Composites Based on Dopamine-Decorated BP Nanosheets/Polyurethane for Efficient Solar-to-Thermal Energy Storage. Renew. Energy 2021, 164, 1–10. [Google Scholar] [CrossRef]
- Li, X.; Wu, Z.; Huang, Q.; Li, C.; Jin, Y.; Zhang, G.; Yang, W.; Deng, J.; Xiong, K.; Wu, Y. Design of the Flame Retardant Form-Stable Composite Phase Change Materials for Battery Thermal Management System. iEnergy 2022, 1, 223–235. [Google Scholar] [CrossRef]
- Du, X.; Jin, L.; Deng, S.; Zhou, M.; Du, Z.; Cheng, X.; Wang, H. Recyclable, Self-Healing, and Flame-Retardant Solid-Solid Phase Change Materials Based on Thermally Reversible Cross-Links for Sustainable Thermal Energy Storage. ACS Appl. Mater. Interfaces 2021, 13, 42991–43001. [Google Scholar] [CrossRef]
- Chen, K.; Liu, Y.; He, R.; Wang, Q. Preparation and Characterization of Polyethylene Glycol-based Form-stable Phase Change Materials Supported by Poly (Vinyl Formal) Foams. J Appl. Polym. Sci. 2022, 139, e52625. [Google Scholar] [CrossRef]
- Cao, Y.; Weng, M.; Mahmoud, M.H.H.; Elnaggar, A.Y.; Zhang, L.; El Azab, I.H.; Chen, Y.; Huang, M.; Huang, J.; Sheng, X. Flame-Retardant and Leakage-Proof Phase Change Composites Based on MXene/Polyimide Aerogels toward Solar Thermal Energy Harvesting. Adv. Compos. Hybrid. Mater. 2022, 5, 1253–1267. [Google Scholar] [CrossRef]
- Yin, G.Z.; Yang, X.M.; Palencia, J.L.D.; Hobson, J.; López, A.M.; Wang, D.Y. Phytic Acid as a Biomass Flame Retardant for Polyrotaxane Based Phase Change Materials. J. Energy Storage 2022, 56, 105853. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, W.; Wu, T.; Wang, C.; Liang, Z. Thermal Management System Study of Flame Retardant Solid–Solid Phase Change Material Battery. Surf. Interfaces 2023, 36, 102558. [Google Scholar] [CrossRef]
- Demirbağ, S.; Aksoy, S.A. Encapsulation of Phase Change Materials by Complex Coacervation to Improve Thermal Performances and Flame Retardant Properties of the Cotton Fabrics. Fibers Polym. 2016, 17, 408–417. [Google Scholar] [CrossRef]
- Du, X.; Wang, S.; Du, Z.; Cheng, X.; Wang, H. Preparation and Characterization of Flame-Retardant Nanoencapsulated Phase Change Materials with Poly(Methylmethacrylate) Shells for Thermal Energy Storage. J. Mater. Chem. A Mater. 2018, 6, 17519–17529. [Google Scholar] [CrossRef]
- Du, X.; Qiu, J.; Deng, S.; Du, Z.; Cheng, X.; Wang, H. Flame-Retardant and Form-Stable Phase Change Composites Based on Black Phosphorus Nanosheets/Cellulose Nanofiber Aerogels with Extremely High Energy Storage Density and Superior Solar-Thermal Conversion Efficiency. J. Mater. Chem. A Mater. 2020, 8, 14126–14134. [Google Scholar] [CrossRef]
- Hu, Z.T.; Reinack, V.H.; An, J.; Indraneel, Z.; Dasari, A.; Yang, J.; Yang, E.H. Ecofriendly Microencapsulated Phase-Change Materials with Hybrid Core Materials for Thermal Energy Storage and Flame Retardancy. Langmuir 2021, 37, 6380–6387. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Duan, W.; Liu, Y.; Wang, Q.; Wen, H. Flame Retardant and Leaking Preventable Phase Change Materials for Thermal Energy Storage and Thermal Regulation. J. Energy Storage 2021, 35, 102248. [Google Scholar] [CrossRef]
- Memon, S.A. Phase Change Materials Integrated in Building Walls: A State of the Art Review. Renew. Sustain. Energy Rev. 2014, 31, 870–906. [Google Scholar] [CrossRef]
- Mu, M.; Basheer, P.A.M.; Sha, W.; Bai, Y.; McNally, T. Shape Stabilised Phase Change Materials Based on a High Melt Viscosity HDPE and Paraffin Waxes. Appl. Energy 2016, 162, 68–82. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Lu, S.; Kong, X.; Liu, S.; Li, Y. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis. Materials 2013, 6, 4758–4775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathgeber, C.; Schmit, H.; Hiebler, S. Mixtures of Alkanes, Fatty Acids and Alcohols as Novel Phase Change Materials: Preparation and Characterization with DSC and T-History. In Proceedings of the 2nd International Conference on Sustainable, Energy Storage, Dublin, UK, 19–21 June 2013. [Google Scholar] [CrossRef]
- Pielichowski, K.; Flejtuch, K. Binary Blends of Polyethers with Fatty Acids: A Thermal Characterization of the Phase Transitions. J. Appl. Polym. Sci. 2003, 90, 861–870. [Google Scholar] [CrossRef]
- Pielichowski, K.; Flejtuch, K. Thermal Properties of Poly(Ethylene Oxide)/Lauric Acid Blends: A SSA–DSC Study. Thermochim. Acta 2006, 442, 18–24. [Google Scholar] [CrossRef]
- Pielichowska, K.; Nowak, M.; Szatkowski, P.; Macherzyńska, B. The Influence of Chain Extender on Properties of Polyurethane-Based Phase Change Materials Modified with Graphene. Appl. Energy 2016, 162, 1024–1033. [Google Scholar] [CrossRef]
- Yin, G.-Z.; Yang, X.-M.; Hobson, J.; López, A.M.; Wang, D.-Y. Bio-Based Poly (Glycerol-Itaconic Acid)/PEG/APP as Form Stable and Flame-Retardant Phase Change Materials. Compos. Commun. 2022, 30, 101057. [Google Scholar] [CrossRef]
- Kang, M.; Liu, Y.; Liang, C.; Lin, W.; Wang, C.; Li, C.; Zhang, F.; Cheng, J. Phase Change Material Microcapsules with DOPO/Cu Modified Halloysite Nanotubes for Thermal Controlling of Buildings: Thermophysical Properties, Flame Retardant Performance and Thermal Comfort Levels. Int. J. Heat. Mass. Transf. 2023, 207, 124045. [Google Scholar] [CrossRef]
- Salgado-Pizarro, R.; Martín, M.; Svobodova-Sedlackova, A.; Calderón, A.; Haurie, L.; Fernández, A.I.; Barreneche, C. Manufacturing of Nano-Enhanced Shape Stabilized Phase Change Materials with Montmorillonite by Banbury Oval Rotor Mixer for Buildings Applications. J. Energy Storage 2022, 55, 105289. [Google Scholar] [CrossRef]
- Liu, C.; Xu, D.; Weng, J.; Zhou, S.; Li, W.; Wan, Y.; Jiang, S.; Zhou, D.; Wang, J.; Huang, Q. Phase Change Materials Application in Battery Thermal Management System: A Review. Materials 2020, 13, 4622. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, D.; Jiang, L.; Zhang, G.; Wu, H.; Day, R.; Jiang, W. Advanced Thermal Management System Driven by Phase Change Materials for Power Lithium-Ion Batteries: A Review. Renew. Sustain. Energy Rev. 2022, 159, 112207. [Google Scholar] [CrossRef]
- Su, Y.; Fan, Y.; Ma, Y.; Wang, Y.; Liu, G. Flame-Retardant Phase Change Material (PCM) for Thermal Protective Application in Firefighting Protective Clothing. Int. J. Therm. Sci. 2023, 185, 108075. [Google Scholar] [CrossRef]
Halogenated Alkanes | IFRs | Heat Absorbers | Synergists | |
---|---|---|---|---|
Examples | Halon 1211, Halon 1301, Halon 1202, etc. | Melamine, APP, PER | Mg(OH)2, Al(OH)3 | Metallic nano-particles; Nano clays |
Mechanism | Removing free radicals from flame | Forming protective char layer; Release of non-flammable gases | Endothermic decomposition; Release of non-flammable gases | Improving performances of other fire retardants |
Advantages | Most effective flame retardants | Medium efficacy | Low cost | Potentially high efficacy |
Drawbacks | Environmentally unfriendly | Works best with solid surfaces rather than liquid surfaces | Lost efficacy | Requires optimization and research |
Halogenated FR | Code | Chemical Formula | Additional Info |
---|---|---|---|
Tetrabromobisphenol A | TBBPA | Most common halogenated FR, reactive FR in epoxy resins | |
Polybromodiphenylether | PBDE | Contains 10 bromine atoms, FR additives in styrene polymers, polyolefins, polyesters, and nylons | |
Hexabromocyclododecane | HBCD | Cycloaliphatic halogenated FR, expanded, or compact PS and textiles | |
Tetrabromophthalic anhydride | TBPA | FR additive in unsaturated polyesters, base material for other FRs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pielichowska, K.; Paprota, N.; Pielichowski, K. Fire Retardant Phase Change Materials—Recent Developments and Future Perspectives. Materials 2023, 16, 4391. https://doi.org/10.3390/ma16124391
Pielichowska K, Paprota N, Pielichowski K. Fire Retardant Phase Change Materials—Recent Developments and Future Perspectives. Materials. 2023; 16(12):4391. https://doi.org/10.3390/ma16124391
Chicago/Turabian StylePielichowska, Kinga, Natalia Paprota, and Krzysztof Pielichowski. 2023. "Fire Retardant Phase Change Materials—Recent Developments and Future Perspectives" Materials 16, no. 12: 4391. https://doi.org/10.3390/ma16124391
APA StylePielichowska, K., Paprota, N., & Pielichowski, K. (2023). Fire Retardant Phase Change Materials—Recent Developments and Future Perspectives. Materials, 16(12), 4391. https://doi.org/10.3390/ma16124391