Fully Automated Bioreactor-Based pH-Cycling System for Demineralization: A Comparative Study with a Conventional Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of a Fully Automated pH-Cycling Acid Challenge System Using a Bioreactor
2.2. Preparation of Enamel Samples
2.3. Three-Dimensional Laser Microscopic Observation
2.4. Micro-Vickers Hardness Measurement
2.5. Cross-Sectional Morphology through Scanning Electron Microscopy
2.6. Contact Microradiography (CMR)
2.7. Statistical Analysis
3. Results
3.1. Step Height Profiles Measured by 3D Laser Microscopylaser Microscopy after pH-Cycling
3.2. Calculated Average Roughness after pH-Cycling
3.3. Micro-Vickers Hardness and Its Changes after pH-Cycling
3.4. Cross-Sectional Scanning Electron Microscope Observations after pH-Cycling
3.5. Measurement of Mineral Loss Value and Lesion Depth by Contact Microradiography Analysis
4. Discussion
4.1. Comparison of Demineralization Characteristics between the Conventional Method and Fully Automated Bioreactor-Based pH-Cycling Method
4.2. Advantages and Prospects of the Fully Automated Bioreactor-Based pH-Cycling System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ten Cate, J.M.; Duijsters, P.P. Influence of Fluoride in Solution on Tooth Demineralization. I. Chemical Data. Caries Res. 1983, 17, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Ten Cate, J.M.; Duijsters, P.P.E. Influence of Fluoride in Solution on Tooth Demineralization. II. Microradiographical Data. Caries Res. 1983, 17, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Inaba, D.; Tanaka, R.; Takagi, O.; Yonemitsu, M.; Arends, J. Computerized Measurements of Microradiographic Mineral Parameters of De- and Remineralized Dental Hard Tissues. J. Dent. Health. 1997, 47, 67–74. [Google Scholar] [CrossRef]
- Iijima, Y.; Koulourides, T. Mineral Density and Fluoride Content of in Vitro Remineralized Lesions. J. Dent. Res. 1988, 67, 577–581. [Google Scholar] [CrossRef]
- Buzalaf, M.A.R.; Hannas, A.R.; Magalhñaes, A.C.; Rios, D.; Honório, H.M.; Delbem, A.C.B. PH-Cycling Models for in Vitro Evaluation of the Efficacy of Fluoridated Dentifrices for Caries Control: Strengths and Limitations. J. Appl. Oral Sci. 2010, 18, 316–334. [Google Scholar] [CrossRef]
- Neff, D. Acid Production from Different Carbohydrate Sources in Human Plaque in Situ. Caries Res. 1967, 1, 78–87. [Google Scholar] [CrossRef]
- Humphrey, S.P.; Williamson, R.T. A Review of Saliva: Normal Composition, Flow, and Function. J. Prosthet. Dent. 2001, 85, 162–169. [Google Scholar] [CrossRef]
- Dawes, C. Physiological Factors Affecting Salivary Flow Rate, Oral Sugar Clearance, and the Sensation of Dry Mouth in Man. J. Dent. Res. 1987, 66, 648–653. [Google Scholar] [CrossRef]
- Rodrigues, E.; Delbem, A.C.B.; Pedrini, D.; de Oliveira, M.S.R. PH-Cycling Model to Verify the Efficacy of Fluoride-Releasing Materials in Enamel Demineralization. Oper. Dent. 2008, 33, 658–665. [Google Scholar] [CrossRef]
- Ushimura, S.; Nakamura, K.; Matsuda, Y.; Minamikawa, H.; Abe, S.; Yawaka, Y. Assessment of the Inhibitory Effects of Fissure Sealants on the Demineralization of Primary Teeth Using an Automatic PH-Cycling System. Dent. Mater. J. 2016, 35, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Sugai, M.; Matsuda, Y.; Nagayama, M.; Kaga, M.; Yawaka, Y. Comparison of Enamel Demineralization between Deciduous and Permanent Teeth Using the Automatic PH-Cycling System. Jpn. J. Pediatr. Dent. 2010, 48, 48–55. [Google Scholar] [CrossRef]
- Amaechi, B.T. Protocols to Study Dental Caries In Vitro: PH Cycling Models. Methods Mol. Biol. 2019, 1922, 379–392. [Google Scholar] [CrossRef] [PubMed]
- ten Cate, J.M.; Buijs, M.J.; Damen, J.J. PH-Cycling of Enamel and Dentin Lesions in the Presence of Low Concentrations of Fluoride. Eur. J. Oral Sci. 1995, 103, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Murata, Y.; Tanaka, T.; Komatsu, H.; Sano, H. Development of New Software as a Convenient Analysis Method for Dental Microradiography. Dent. Mater. J. 2007, 26, 414–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, Y.; Komatsu, H.; Murata, Y.; Tanaka, T.; Sano, H. A Newly Designed Automatic PH-Cycling System to Simulate Daily PH Fluctuations. Dent. Mater. J. 2006, 25, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Satou, R.; Iwasaki, M.; Kamijo, H.; Sugihara, N. Improved Enamel Acid Resistance Using Biocompatible Nano-Hydroxyapatite Coating Method. Materials 2022, 15, 7171. [Google Scholar] [CrossRef]
- Angmar, B.; Carlström, D.; Glas, J.-E. Studies on the Ultrastructure of Dental Enamel: IV. The Mineralization of Normal Human Enamel. J. Ultrastruct. Res. 1963, 8, 12–23. [Google Scholar] [CrossRef]
- Keyes, P.H. Present and Future Measures for Dental Caries Control. J. Am. Dent. Assoc. 1969, 79, 1395–1404. [Google Scholar] [CrossRef]
- Tenten Cate, J.M.; Arends, J. Remmeralization of Artificial Enamel Lesions in Vitro. Caries Res. 1977, 11, 277–286. [Google Scholar] [CrossRef]
- Moriya, T. In Vitro Remineralization of Bovine Enamel with Various Ca/P Ratios. J. Dent. Health 1999, 49, 40–54. [Google Scholar] [CrossRef]
- Stephan, R.M. Changes in Hydrogen-Ion Concentration on Tooth Surfaces and in Carious Lesions. J. Am. Dent. Assoc. 1940, 27, 718–723. [Google Scholar] [CrossRef]
- Syozi, N.; Alireza, S.; Junji, T. A Theoretical Consideration on Critical PH in Enamel Demineralization. Jpn. J. Conserv. Dent. 2014, 57, 111–120. [Google Scholar] [CrossRef]
- Lussi, A.; Jaeggi, T. Erosion—Diagnosis and Risk Factors. Clin. Oral Investig. 2008, 12 (Suppl. S1), S5–S13. [Google Scholar] [CrossRef] [Green Version]
- Lussi, A.; Carvalho, T.S. Erosive Tooth Wear: A Multifactorial Condition of Growing Concern and Increasing Knowledge. Erosive Tooth Wear 2014, 25, 1–15. [Google Scholar] [CrossRef]
- Lagerweij, M.D.; de Josselin de Jong, E.; Ten Cate, J.M. The Video Camera Compared with the Densitometer as a Scanning Device for Microradiography. Caries Res. 1994, 28, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Oki, H.; Toshie, C.; Shinji, S.; Yasuko, M. Demineralization and Remineralization Phenomena of Human Enamel in Acid Erosion Model. J. Hard Tissue Biol. 2016, 25, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Takako, E.; Ryouichi, S.; Yasuo, M.; Naoki, S. Comparison of Resistance of Dentin to Erosive Acid after Application of Fluoride to Teeth. J. Hard Tissue Biol. 2020, 29, 193–202. [Google Scholar] [CrossRef]
- Yasuo, M.; Nobuhiko, H.; Shinya, A.; Akira, K. Effect of Chewing Gum Containing Calcified Seaweed on Remineralization and Acid Resistance of Enamel Subsurface Lesions. J. Hard Tissue Biol. 2012, 21, 315–320. [Google Scholar] [CrossRef]
- Van Houte, J.; Sansone, C.; Joshipura, K.; Kent, R. In Vitro Acidogenic Potential and Mutans Streptococci of Human Smooth-Surface Plaque Associated with Initial Caries Lesions and Sound Enamel. J. Dent. Res. 1991, 70, 1497–1502. [Google Scholar] [CrossRef]
No | Parts Name | Quantity | Price (dollar) |
---|---|---|---|
1 | Bioreactor vessel | 1 | 2100.00 |
BC-200cc, Biott Corp., Tokyo, Japan | |||
2 | pH electrode sensor | 1 | 530.00 |
EASYFERM PLUS PHI S8 120, HAMILTON Corp., Bonaduz, Switzerland | |||
3 | pH electrode cable | 1 | 150.00 |
Length 1.5 m, BNC connector | |||
4 | pH controller | 1 | 1200.00 |
DJ-1023, Biott Corp., Tokyo, Japan | |||
Control method: Time-division proportion or Interval | |||
Measurement range: pH2.00–12.00 | |||
Communication method: RS485 | |||
Output: 2 AC outlets | |||
5 | Acid solution pump | 1 | 870.00 |
AC-2110II, ATTO Corp., Tokyo, Japan | |||
Flow rate: 5 to 1500 mL/h (using tubes with inner diameters of 1–3 mm) | |||
6 | Alkali solution pump | 1 | 870.00 |
AC-2110II, ATTO Corp., Tokyo, Japan | |||
Flow rate: 5 to 1500 mL/h (using tubes with inner diameters of 1–3 mm) | |||
7 | Waste solution pump | 1 | 870.00 |
AC-2110II, ATTO Corp., Tokyo, Japan | |||
Flow rate: 5 to 1500 mL/h (using tubes with inner diameters of 1–3 mm) | |||
8 | Magnetic stirrer | 1 | 320.00 |
HS-30DN, ASONE Corp., Tokyo, Japan | |||
9 | Communication cable | 1 | 135.00 |
10 | pH cycling control software set (for Windows OS) | 1 | 1970.00 |
Control program ver2.1, Biott Corp., Tokyo, Japan | |||
Data display program ver4.0, Biott Corp., Tokyo, Japan | |||
GRAPH2 ver4.3, Biott Corp., Tokyo, Japan | |||
11 | USB3.0-RS485 converter | 1 | 270.00 |
USB3.0-RS485 converter, Biott Corp., Tokyo, Japan | |||
Required for connecting Windows PC and pH controller | |||
Total Price: | 9285.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satou, R.; Miki, N.; Iwasaki, M.; Sugihara, N. Fully Automated Bioreactor-Based pH-Cycling System for Demineralization: A Comparative Study with a Conventional Method. Materials 2023, 16, 4929. https://doi.org/10.3390/ma16144929
Satou R, Miki N, Iwasaki M, Sugihara N. Fully Automated Bioreactor-Based pH-Cycling System for Demineralization: A Comparative Study with a Conventional Method. Materials. 2023; 16(14):4929. https://doi.org/10.3390/ma16144929
Chicago/Turabian StyleSatou, Ryouichi, Naoko Miki, Miyu Iwasaki, and Naoki Sugihara. 2023. "Fully Automated Bioreactor-Based pH-Cycling System for Demineralization: A Comparative Study with a Conventional Method" Materials 16, no. 14: 4929. https://doi.org/10.3390/ma16144929
APA StyleSatou, R., Miki, N., Iwasaki, M., & Sugihara, N. (2023). Fully Automated Bioreactor-Based pH-Cycling System for Demineralization: A Comparative Study with a Conventional Method. Materials, 16(14), 4929. https://doi.org/10.3390/ma16144929