Systematic Approach to the Synthesis of Cobalt-Containing Polyoxometalates for Their Application as Energy Storage Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of K4H2[CoW12O40]·12H2O (K-CoW12)
2.2. One-Pot Preparation of CoSiW11 Electrolyte
3. Results and Discussion
3.1. Optimization of the Synthetic Procedure for K4H2[CoW12O40] (K-CoW12)
3.1.1. Optimization of the pH Conditions for the Formation of Co2W11
3.1.2. Stoichiometry
3.1.3. Reaction Time
3.1.4. Transformation of Co2W11 to CoW12
3.1.5. Comparison with the Previously Reported Synthetic Methods
3.1.6. Electrochemical Characterization
3.2. Development of the [Co(H2O)SiW11O39]6− (CoSiW11) Electrolyte
3.2.1. One-Pot Preparation of CoSiW11 Electrolyte
3.2.2. Physicochemical Properties
3.2.3. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pope, M.T. Introduction to Polyoxometalate Chemistry. In Polyoxometalate Molecular Science; Borrás-Almenar, J.J., Coronado, E., Müller, A., Pope, M., Eds.; NATO Science Series; Springer: Dordrecht, The Netherlands, 2003; pp. 3–31. ISBN 978-94-010-0091-8. [Google Scholar]
- Ammam, M. Polyoxometalates: Formation, Structures, Principal Properties, Main Deposition Methods and Application in Sensing. J. Mater. Chem. A 2013, 1, 6291–6312. [Google Scholar] [CrossRef]
- Wang, S.-S.; Yang, G.-Y. Recent Advances in Polyoxometalate-Catalyzed Reactions. Chem. Rev. 2015, 115, 4893–4962. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Álvarez, L.; Ruiz-Rubio, L.; Artetxe, B.; Vivanco, M.D.; Gutiérrez-Zorrilla, J.M.; Vilas-Vilela, J.L. Chitosan Nanogels as Nanocarriers of Polyoxometalates for Breast Cancer Therapies. Carbohydr. Polym. 2019, 213, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Bilbao, E.; Fernandez-Navarro, L.; Artetxe, B.; Gutierrez-Zorrilla, J.M. General Principles and Structural Chemistry of Polyoxometalates. In Polyoxometalates: Advances, Properties, and Applications; Jenny Stanford Publishing: Dubai, United Arab Emirates, 2022; pp. 1–56. ISBN 978-1-00-327744-6. [Google Scholar]
- Vilà-Nadal, L.; Cronin, L. Self-Assembly of Molecular Metal Oxide Nanoclusters. In Handbook of Solid State Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–20. ISBN 978-3-527-69103-6. [Google Scholar]
- Gumerova, N.I.; Rompel, A. Synthesis, Structures and Applications of Electron-Rich Polyoxometalates. Nat. Rev. Chem. 2018, 2, 0112. [Google Scholar] [CrossRef]
- Sánchez-Díez, E.; Ventose, E.; Guarnieri, M.; Trovo, A.; Flox, C.; Marcilla, R.; Soavi, F.; Mazur, P.; Aranzabe, E.; Ferret, R. Redox Flow Batteries: Status and Perspective towards Sustainable Stationary Energy Storage. J. Power Sources 2021, 481, 228804–228827. [Google Scholar]
- Tang, H.; Qu, Z.; Yan, Y.; Zhang, W.; Zhang, H.; Zhu, M.; Schmidt, O.G. Unleashing Energy Storage Ability of Aqueous Battery Electrolytes. Mater. Futures 2022, 1, 022001. [Google Scholar] [CrossRef]
- Hu, B.; Li, H.; Fan, H.; Song, J. A Long-Lifetime Aqueous Organic Redox Flow Battery Utilizing Multi-Redox Anolyte. Energy Storage Mater. 2023, 59, 102789. [Google Scholar] [CrossRef]
- Nishimoto, Y.; Yokogawa, D.; Yoshikawa, H.; Awaga, K.; Irle, S. Super-Reduced Polyoxometalates: Excellent Molecular Cluster Battery Components and Semipermeable Molecular Capacitors. J. Am. Chem. Soc. 2014, 136, 9042–9052. [Google Scholar] [CrossRef]
- Keita, B.; Nadjo, L. Electrochemistry of Isopoly and Heteropoly Oxometalates. In Encyclopedia of Electrochemistry; Wiley-VCH: London, UK, 2007; pp. 607–695. ISBN 978-3-527-30250-5. [Google Scholar]
- Pratt, H.D.; Hudak, N.S.; Fang, X.; Anderson, T.M. A Polyoxometalate Flow Battery. J. Power Sources 2013, 236, 259–264. [Google Scholar] [CrossRef]
- Pratt, H.D., III; Anderson, T.M. Mixed Addenda Polyoxometalate “Solutions” for Stationary Energy Storage. Dalton Trans. 2013, 42, 15650–15655. [Google Scholar] [CrossRef]
- Pratt, H.D., III; Pratt, W.R.; Fang, X.; Hudak, N.S.; Anderson, T.M. Mixed-Metal, Structural, and Substitution Effects of Polyoxometalates on Electrochemical Behavior in a Redox Flow Battery. Electrochim. Acta 2014, 138, 210–214. [Google Scholar] [CrossRef]
- VanGelder, L.E.; Brennessel, W.W.; Matson, E.M. Tuning the Redox Profiles of Polyoxovanadate-Alkoxide Clusters via Heterometal Installation: Toward Designer Redox Reagents. Dalton Trans. 2018, 47, 3698–3704. [Google Scholar] [CrossRef] [PubMed]
- VanGelder, L.E.; Kosswattaarachchi, A.M.; Forrestel, P.L.; Cook, T.R.; Matson, E.M. Polyoxovanadate-Alkoxide Clusters as Multi-Electron Charge Carriers for Symmetric Non-Aqueous Redox Flow Batteries. Chem. Sci. 2018, 9, 1692–1699. [Google Scholar] [CrossRef] [Green Version]
- Peake, C.L.; Kibler, A.J.; Newton, G.N.; Walsh, D.A. Organic–Inorganic Hybrid Polyoxotungstates as Configurable Charge Carriers for High Energy Redox Flow Batteries. ACS Appl. Energy Mater. 2021, 4, 8765–8773. [Google Scholar] [CrossRef]
- Barros, A.; Eletxigerra, U.; Aranzabe, E.; Hernaiz, M. Polyoxometalate-Based Redox Flow Batteries. In Polyoxometalates: Advances, Properties, and Applications; Jenny Stanford Publishing: Dubai, United Arab Emirates, 2022; pp. 275–308. ISBN 978-981-4968-14-0. [Google Scholar]
- Wang, X.; Gao, M.; Lee, Y.M.; Salla, M.; Zhang, F.; Huang, S.; Wang, Q. E-Blood: High Power Aqueous Redox Flow Cell for Concurrent Powering and Cooling of Electronic Devices. Nano Energy 2022, 93, 106864. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, S.; Wang, H.; Yang, C.; Su, X.; Xiang, Y. An Aqueous Redox Flow Battery with a Tungsten-Cobalt Heteropolyacid as the Electrolyte for Both the Anode and Cathode. Adv. Energy Mater. 2017, 7, 1601224. [Google Scholar] [CrossRef]
- Friedl, J.; Pfanschilling, F.L.; Holland-Cunz, M.V.; Fleck, R.; Schricker, B.; Wolfschmidt, H.; Stimming, U. A Polyoxometalate Redox Flow Battery: Functionality and Upscale. Clean Energy 2019, 3, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Ai, F.; Wang, Z.; Lai, N.-C.; Zou, Q.; Liang, Z.; Lu, Y.-C. Heteropoly Acid Negolytes for High-Power-Density Aqueous Redox Flow Batteries at Low Temperatures. Nat. Energy 2022, 7, 417–426. [Google Scholar] [CrossRef]
- Barros, Á.; Eletxigerra, U.; Aranzabe, E.; Artetxe, B.; Gutiérrez-Zorrilla, J.M. Towards Cobalt-Containing Polyoxometalate-Based Electrolytes for Redox Flow Batteries Operating under Mild Conditions. Electrochim. Acta 2023, 445, 142058–142069. [Google Scholar] [CrossRef]
- Gunn, N.L.O.; Ward, D.B.; Menelaou, C.; Herbert, M.A.; Davies, T.J. Investigation of a Chemically Regenerative Redox Cathode Polymer Electrolyte Fuel Cell Using a Phosphomolybdovanadate Polyoxoanion Catholyte. J. Power Sources 2017, 348, 107–117. [Google Scholar] [CrossRef]
- Matsui, T.; Morikawa, E.; Nakada, S.; Okanishi, T.; Muroyama, H.; Hirao, Y.; Takahashi, T.; Eguchi, K. Polymer Electrolyte Fuel Cells Employing Heteropolyacids as Redox Mediators for Oxygen Reduction Reactions: Pt-Free Cathode Systems. ACS Appl. Mater. Interfaces 2016, 8, 18119–18125. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.C.W.; McCutcheon, T.P. Heteropoly Salts Containing Cobalt and Hexavalent Tungsten in the Anion. J. Am. Chem. Soc. 1956, 78, 4503–4510. [Google Scholar] [CrossRef]
- Glass, E.N.; Fielden, J.; Kaledin, A.L.; Musaev, D.G.; Lian, T.; Hill, C.L. Extending Metal-to-Polyoxometalate Charge Transfer Lifetimes: The Effect of Heterometal Location. Chem. Eur. J. 2014, 20, 4297–4307. [Google Scholar] [CrossRef] [Green Version]
- Uchida, S.; Mizuno, N. Zeotype Ionic Crystal of Cs5 [Cr3O(OOCH)6(H2O)3][α-CoW12O40]·7.5H2O with Shape-Selective Adsorption of Water. J. Am. Chem. Soc. 2004, 126, 1602–1603. [Google Scholar] [CrossRef]
- Nolan, A.L.; Burns, R.C.; Lawrance, G.A. Oxidation of [CoIIW12O40]6− to [CoIIIW12O40]5− by Peroxomonosulfate in Strong and Weak Acid Solutions, an Example of Zero-Order Kinetics. J. Chem. Soc. Dalton Trans. 1998, 18, 3041–3048. [Google Scholar] [CrossRef]
- Misra, A.; Kozma, K.; Streb, C.; Nyman, M. Beyond Charge Balance: Counter-Cations in Polyoxometalate Chemistry. Angew. Chem. Int. Ed. 2020, 59, 596–612. [Google Scholar] [CrossRef] [Green Version]
- Radio, S.V.; Kryuchkov, M.A.; Zavialova, E.G.; Baumer, V.N.; Shishkin, O.V.; Rozantsev, G.M. Equilibrium in the Acidified Aqueous Solutions of Tungstate Anion: Synthesis of Co(II) Isopolytungstates. Crystal Structure of Co(II) Paratungstate B Co5[W12O40(OH)2]·37H2O. J. Coord. Chem. 2010, 63, 1678–1689. [Google Scholar] [CrossRef]
- Gimenez-Saiz, C.; Galan-Mascaros, J.R.; Triki, S.; Coronado, E.; Ouahab, L. [(Co(H2O)4)2(H2W12O42)]N6n-: A Novel Chainlike Heteropolyanion Formed by Paradodecatungstate and Cobalt(II) Ions. Inorg. Chem. 1995, 34, 524–526. [Google Scholar] [CrossRef]
- da Silva, M.J.; de Andrade da Silva, P.H.; Ferreira, S.O.; da Silva, R.C.; Brusiquezi, C.G.O. How the Cobalt Position in the Keggin Anion Impacts the Activity of Tungstate Catalysts in the Furfural Acetalization with Alkyl Alcohols. Chemistryselect 2022, 7, e202104174–e202104184. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.; Martens, W.N.; Frost, R.L. Synthesis and Characterization of Cobalt Hydroxide, Cobalt Oxyhydroxide, and Cobalt Oxide Nanodiscs. J. Phys. Chem. C 2010, 114, 111–119. [Google Scholar] [CrossRef]
- Shimura, Y.; Tsuchida, R. Absorption Spectra of Heteropolyanions. II The Heteropolytungstates Containing Co(II), Co (III) or Mn(IV) as Central Ions. BCSJ 1957, 30, 502–505. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: Hoboken, NJ, USA, 2001; ISBN 978-0-471-04372-0. [Google Scholar]
- Skyllas-Kazacos, M.; Kazacos, G.; Poon, G.; Verseema, H. Recent advances with UNSW vanadium-based redox flow batteries. Int. J. Energy Res. 2010, 34, 182–189. [Google Scholar] [CrossRef]
- Weakley, T.J.R.; Malik, S.A. Heteropolyanions Containing Two Different Heteroatoms—I. J. Inorg. Nucl. Chem. 1967, 29, 2935–2944. [Google Scholar] [CrossRef]
- Téazéa, A.; Hervéa, G.; Finke, R.G.; Lyon, D.K. α-, β-, and γ-Dodecatungstosilicic Acids: Isomers and Related Lacunary Compounds. In Inorganic Syntheses; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1990; pp. 85–96. ISBN 978-0-470-13258-6. [Google Scholar]
- Girardi, M.; Blanchard, S.; Griveau, S.; Simon, P.; Fontecave, M.; Bedioui, F.; Proust, A. Electro-Assisted Reduction of CO2 to CO and Formaldehyde by (TOA)6[A-SiW11O39Co] Polyoxometalate. Eur. J. Inorg. Chem. 2015, 2015, 3642–3648. [Google Scholar] [CrossRef]
- Arens, J.T.; Blasco-Ahicart, M.; Azmani, K.; Soriano-López, J.; García-Eguizábal, A.; Poblet, J.M.; Galan-Mascaros, J.R. Water Oxidation Electrocatalysis in Acidic Media with Co-Containing Polyoxometalates. J. Catal. 2020, 389, 345–351. [Google Scholar] [CrossRef]
- Samonte, J.L.; Pope, M.T. Derivatization of Polyoxotungstates in Aqueous Solution. Exploration of the Kinetic Stability of Cobalt(II)- and Cobalt(III) Derivatives of Lacunary Anions with Pyridine and Pyridine-Type Ligands. Can. J. Chem. 2001, 79, 802–808. [Google Scholar] [CrossRef]
- Pretsch, E.; Bühlmann, P.; Badertscher, M. Structure Determination of Organic Compounds: Tables of Spectral Data; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-662-62438-8. [Google Scholar]
pH | Yield K-Co2W11 (%) |
---|---|
6.5 | 46 ± 2 |
7 | 51 ± 1 |
7.5 | 96 ± 1 |
8 | 33 ± 2 |
Co(Ac)2:Na2WO4 Ratio | Yield K-Co2W11 (%) |
---|---|
1:5.5 | 89 ± 1 |
1:6 | 96 ± 1 |
1:6.5 | 91 ± 1 |
pH | Time | Precip. Agent | Co2W11 Yield | Acidification | Purification Method | CoW12 Yield | Reaction Time | Reference |
---|---|---|---|---|---|---|---|---|
6.5–7.5 | 10′ | NH4(Ac) | 85% | 1M HCl | Recryst H2O ∙ 4 | 70% | Five weeks | [27] |
6.5–7.5 | 10′ | KCl | - | 2M H2SO4 | Recryst pH 4 H2O | 47% | Two weeks | [30] |
- | 18–24 h | KCl | - | 1M HCl | Recryst 0.1 M HAc | 10% | Two weeks | [29] |
7 | 20′ | KAc | - | 2M H2SO4 | Ion exchange column | - | Undefined | [28] |
7.5 | 20′ | KAc | 96% | 1M HCl | - | 88% | One week | This work |
Properties | One-Pot | Traditional |
---|---|---|
pH | 4.7 | 4.7 |
UV-Vis absorbance (nm) | 546 | 546 |
Concentration (mM) | 27 | 20 |
Conductivity (mS cm−1) | 45.5 | 27.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barros, Á.; Artetxe, B.; Eletxigerra, U.; Aranzabe, E.; Gutiérrez-Zorrilla, J.M. Systematic Approach to the Synthesis of Cobalt-Containing Polyoxometalates for Their Application as Energy Storage Materials. Materials 2023, 16, 5054. https://doi.org/10.3390/ma16145054
Barros Á, Artetxe B, Eletxigerra U, Aranzabe E, Gutiérrez-Zorrilla JM. Systematic Approach to the Synthesis of Cobalt-Containing Polyoxometalates for Their Application as Energy Storage Materials. Materials. 2023; 16(14):5054. https://doi.org/10.3390/ma16145054
Chicago/Turabian StyleBarros, Ángela, Beñat Artetxe, Unai Eletxigerra, Estibaliz Aranzabe, and Juan M. Gutiérrez-Zorrilla. 2023. "Systematic Approach to the Synthesis of Cobalt-Containing Polyoxometalates for Their Application as Energy Storage Materials" Materials 16, no. 14: 5054. https://doi.org/10.3390/ma16145054
APA StyleBarros, Á., Artetxe, B., Eletxigerra, U., Aranzabe, E., & Gutiérrez-Zorrilla, J. M. (2023). Systematic Approach to the Synthesis of Cobalt-Containing Polyoxometalates for Their Application as Energy Storage Materials. Materials, 16(14), 5054. https://doi.org/10.3390/ma16145054