Effect of Target Power on Microstructure, Tribological Performance and Biocompatibility of Magnetron Sputtered Amorphous Carbon Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Procedure
2.2. Tribological Test
2.3. Finite Element Analysis
2.4. Cell Behavior
3. Results
3.1. Raman Analysis
3.2. Surface Topography
3.3. Contact Angle Measurement
3.4. Tribological Behavior
3.4.1. Friction
3.4.2. Wear
3.5. Finite Element Analysis
3.6. Proliferation, Viability and Morphology of Preosteoblasts
3.6.1. Cell Proliferation and Viability
3.6.2. Scanning Electron Microscope Images of Preosteoblasts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berman, D.; Erdemir, A.; Zinovev, A.V.; Sumant, A.V. Nanoscale friction properties of graphene and graphene oxide. Diam. Relat. Mater. 2015, 54, 91–96. [Google Scholar] [CrossRef]
- Yang, X.; Zou, T.; Shi, C.; Liu, E.; He, C.; Zhao, N. Effect pf carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites. Mater. Sci. Eng. A 2016, 660, 11–18. [Google Scholar] [CrossRef]
- Bae, K.M.; Yang, H.D.; Tufa, L.T.; Kang, T.J. Thermobattery based on CNT coated carbon textile and thermoelectric Electrolyte. Int. Precis. J. Eng. Manuf. 2015, 16, 1245–1250. [Google Scholar] [CrossRef]
- Zhao, S.; Zheng, Z.; Huang, Z.; Dong, S.; Luo, P.; Zhang, Z.; Wang, Y. Cu matrix composites reinforced with alighed carbon nanotubes: Mechanical, electrical and termal properties. Mater. Sci. Eng. A 2016, 675, 82–91. [Google Scholar] [CrossRef]
- Ryu, H.J.; Kim, S.H.; Hong, S.H. Effect of deposition pressure on bonding nature in hydrogenated amorphous carbon films processed by electron cyclotron resonance plasma enhanced chemical vapor deposition. Mater. Sci. Eng. A 2000, 277, 57–63. [Google Scholar] [CrossRef]
- Fu, Q.-G.; Tan, B.-Y.; Zhuang, L.; Jing, J.-Y. Significant improvement of mechanical properties of carbon/carbon composites by in situ growth of SiC nanowires. Mater. Sci. Eng. A 2016, 672, 121–128. [Google Scholar] [CrossRef]
- Hong, Y.-S.; Lee, S.-R.; Kim, J.-H. Application of a DLC-Coating for improving hydrostatic piston shoe bearing performance under mixed friction conditions. Int. Precis. J. Eng. Manuf. 2015, 16, 335–341. [Google Scholar] [CrossRef]
- Lungu, C.P. Nanostructure influence on DLC-Ag tribological coatings. Surf. Coat. Technol. 2005, 200, 198–202. [Google Scholar] [CrossRef]
- Yari, M.; Larijani, M.M.; Afshar, A.; Eshghabadi, M.; Shokouhy, A. Physical properties of sputtered amorphous carbon coatings. J. Alloys Compd. 2012, 513, 135–138. [Google Scholar] [CrossRef]
- Cui, F.Z.; Li, D.J. A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films. Surf. Coat. Technol. 2000, 131, 481–487. [Google Scholar] [CrossRef]
- Feng, B.; Cao, D.M.; Meng, W.J.; Xu, J.; Tittsworth, R.C.; Rehn, L.E.; Baldo, P.M.; Doll, G.L. Characterization and mictrostructure and mechanical behavior of sputter deposited Ti-containing amorphous carbon coatings. Surf. Coat. Technol. 2001, 148, 153–162. [Google Scholar] [CrossRef]
- Quinn, J.; Lemoine, P.; Maguire, P.; McLaughlin, J. McLaughlin. Ultra-thin tetrahedral amorphous carbon films with strong adhesion, as measured by nanoscratch testing. Diam. Relat. Mater. 2004, 13, 1385–1390. [Google Scholar] [CrossRef]
- An, W.; Zhao, X.; Gu, L.; Su, R. Nanomechanical properties and surface wettability of carbon films prepared by magnetron sputtering. Key Eng. Mater. 2014, 609–610, 357–361. [Google Scholar] [CrossRef]
- Lam, B.X. Diamond—Like carbon coatings for tribological applications. Sci. Technol. Dev. 2008, 11, 100–108. [Google Scholar]
- Charitidis, C.A. Nanomechanical and nanotribological properties of carbon-based thin films: A review. Int. Refract. J. Met. Hard Mater. 2010, 28, 51–70. [Google Scholar] [CrossRef]
- Afshar, A.; Yari, M.; Larijani, M.M.; Eshghabadi, M. Effect of substrate temperature on structural properties and corrosion resistance of carbon thin films used as bipolar plates in polymer electrolyte membrane fuel cells. Alloy J. Compd. 2010, 502, 451–455. [Google Scholar] [CrossRef]
- Svahn, F.; K-Asa, R.; Wallen, E. The influence of surface roughness on friction and wear of machine element coatings. Wear. 2003, 254, 1092–1098. [Google Scholar] [CrossRef]
- Liu, D.; Benstetter, G.; Lodermeier, E. Surface roughness, mechanical and tribological properties of ultrathin tetrahedral amorphous carbon coatings from atomic force measurements. Thin Solid Film. 2003, 436, 244–249. [Google Scholar] [CrossRef]
- Li, Q.; Li, W.; Feng, Q.; Wang, P.; Mao, M.; Liu, J.; Zhou, L.; Wang, H.; Yao, H. Thickness-depentant fracture of amorphous carbon coating on SnO2 nanowire electrodes. Carbon 2014, 80, 793–798. [Google Scholar] [CrossRef]
- Bhushan, B. Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5: Recent developments. Diam. Relat. Mater. 1999, 8, 1985–2015. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Huang, H.-L.; Chen, Y.-C.; Hsu, J.-T.; Shieh, T.-M.; Tsai, M.-T. Biological characteristics of the MG-63 Human Osteosarcoma cells on composite Tantalum Carbide/ Amorphous Carbon Films. PLoS ONE 2014, 9, e95590. [Google Scholar] [CrossRef]
- Lukyanchenko, V.; Donkov, N.; Zykova, A.; Safonov, V.; Miroshnichenko, K. In vitro biocompatibility of amorphous carbon based coatings by varying of surface chemistry and nitrogen concentrations. Probl. At. Sci. Technol. 2015, 21, 216–219. [Google Scholar]
- Dearnaley, G.; Arps, J.H. Biomedical applications of diamond-like carbon (DLC coatings): A review. Surf. Coat. Technol. 2005, 200, 2518–2524. [Google Scholar] [CrossRef]
- Subbiah, R.; Du, P.; Van, S.Y.; Suhaeri, M.; Hwang, M.P.; Lee, K.; Park, K. Fibronectin-tethered graphene oxide as an artificial matrix for osteogenesis. Biomed. Mater. 2014, 9, 065003–065015. [Google Scholar] [CrossRef] [PubMed]
- Dhandapani, V.S.; Subbiah, R.; Elangovan, T.; Madhankumar, A.; Park, K.; Gasem, Z.M.; Veeravazhuthi, V.; D-Kim, E. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings. Appl. Surf. Sci. 2016, 371, 262–274. [Google Scholar] [CrossRef]
- Rodil, S.E.; Olivares, R.; Arzate, H.; Muhl, S. Properties of carbon films and their biocompatibility using in-vitro tests. Diam. Relat. Mater. 2003, 12, 931–937. [Google Scholar] [CrossRef]
- Jiang, C.-P.; Chen, Y.-Y. Biofabrication of Hybrid Bone Scaffolds using a dual nozzle bioplotter and in-vitro study of Osteoblast cell. Int. Precis. J. Eng. Manuf. 2014, 15, 1947–1953. [Google Scholar] [CrossRef]
- Chai, F.; Mathis, N.; Blanchemain, N.; Meunier, C.; Hildebrand, H.F. Osteoblast interaction with DLC-coated Si substrates. Acta Biomater. 2008, 4, 1369–1381. [Google Scholar] [CrossRef]
- Randeniya, L.K.; Bendavid, A.; Martin, P.J.; Amin, M.S.; Rohanizadeh, R.; Tang, F.; Cairney, J.M. Thin-film nanocomposites of diamond-like carbon and titanium oxide; Osteoblast adhesion and surface properties. Diam. Relat. Mater. 2010, 19, 329–335. [Google Scholar] [CrossRef]
- Penkov, O.V.; Pukha, V.E.; Starikova, S.L.; Khadem, M.; Starikov, V.V.; Maleev, M.V.; Kim, E.-D. Highly wear-resistant and biocompatible carbon nanocomposite coatings for dental implants. Biomaterials 2016, 102, 130–136. [Google Scholar] [CrossRef]
- Dhandapani, V.S.; Elangovan, T.; Madhankumar, A.; Shin, K.S.; Veeravazhuthi, V.; Yau, S.Y.; Kim, C.L.; D-Kim, E. Effect of Ag content on the microstructure, tribological and corrosion properties of amorphous carbon coatings on 316L SS. Surf. Coatings Technol. 2014, 240, 128–136. [Google Scholar] [CrossRef]
- Archard, J.F. Single Contacts and Multiple Encounters. Appl. J. Phys. 1961, 32, 1420–1425. [Google Scholar] [CrossRef]
- Shon, I.J.; Wang, H.; Cho, S.W.; Kim, W. Mechanical Synthesis and Rapid Consolidation of Nanocrystalline TiAl-Al2O3 Composites by High Frequency Induction Heated Sintering. Mater. Trans. 2011, 52, 1832–1835. [Google Scholar] [CrossRef]
- Bhushan, B.; Li, X. Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices. Mater. J. Res. 1997, 12, 54–63. [Google Scholar] [CrossRef]
- Available online: https://www.sonelastic.com/en/fundamentals/tables-of-materials-properties/ceramics.html (accessed on 21 April 2023).
- Dolbow, J.; Gosz, M. Effect of out-of-plane properties of a polyimide film on the stress fields in microelectronic structures. Mech. Mater. 1996, 23, 311–321. [Google Scholar] [CrossRef]
- Thangavel, E.; Ramasundaram, S.; Pitchaimuthu, S.; Hong, S.W.; Lee, S.Y.; Yoo, S.S.; Kim, D.E.; Ito, E.; Kang, Y.S. Structural and tribological characteristics of poly(vinylidene fluoride)/functionalized graphene oxide nanocomposite thin films. Compos. Sci. Technol. 2014, 90, 187–192. [Google Scholar] [CrossRef]
- Ishpal, I.; Panwar, O.; Srivastava, A.; Kumar, S.; Tripathi, R.; Kumar, M.; Singh, S. Effect of substrate bias in amorphous carbon films having embedded nanocrystallites. Surf. Coat. Technol. 2011, 206, 155–164. [Google Scholar] [CrossRef]
- Pradhan, D.; Sharon, M. Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor. Appl. Surf. Sci. 2007, 253, 7004–7010. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Ji, L.; Liu, X.; Wu, Y.; Lv, Y.; Fu, Y.; Zhou, H.; Chen, J. Synthesis and characterization of titanium-containing graphite-like carbon films with low internal stress and superior tribological properties. Phys. J. D Appl. Phys. 2012, 45, 295301. [Google Scholar] [CrossRef]
- Fadzilah, A.N.; Dayana, K.; Rusop, M. Fabrication and characterization of camphor based amorphous carbon thin films. Procedia Eng. 2013, 56, 743–749. [Google Scholar] [CrossRef]
- Wei, Q.; Sharma, A.K.; Sankar, J.; Narayan, J. Mechanical properties of diamond-like carbon composite thin films prepared by pulsed laser deposition. Compos. Part B 1999, 30, 675–684. [Google Scholar] [CrossRef]
- Asl, A.M.; Kameli, P.; Ranjbar, M.; Salamati, H.; Jannesari, M. Correlation between microstructure and hydrophobicity properties of pulsed laser deposited diamond-like carbon films. Superlattices Microstruct. 2015, 81, 64–79. [Google Scholar]
- Choi, H.W.; Dauskardt, R.H.; Lee, S.-C.; Lee, K.-R.; Oh, K.H. Characteristic of silver doped DLC films on surface properties and protein adsorption. Diam. Relat. Mater. 2008, 17, 252–257. [Google Scholar] [CrossRef]
- Schlebrowski, T.; Beucher, L.; Bazzi, H.; Hahn, B.; Wehner, S.; Fischer, C.B. Changing Contents of Carbon Hybridizations in Amorphous Hydrogenated Carbon Layers (a-C:H) on Sustainable Polyhydroxybutyrate (PHB) Exhibit a Significant Deterioration in Stability, Depending on Thickness. J. Carbon Res. 2019, 5, 52. [Google Scholar] [CrossRef]
- Tay, B.K.; Sheeja, D.; Lau, S.; Guo, J. GuoStudy of surface energy of tetrahedral amorphous carbon films modified in various gas plasma. Diam. Relat. Mater. 2003, 12, 2072–2076. [Google Scholar] [CrossRef]
- Schulz, H.; Leonhardt, M.; Scheibe, J.H.; Schultrich, B. Ultra hydrophobic wetting behaviour of amorphous carbon films. Surf. Coat. Technol. 2005, 200, 1123–1126. [Google Scholar]
- Kakas, D.; Terek, P.; Miletic, A.; Kovacevic, L.; Vilotic, M.; Skoric, B.; Krumes, D. Friction and wear of low temperature deposited TiN coating sliding in dry conditions at various speeds. Tehn. Vjesn. 2013, 20, 27–33. [Google Scholar]
- Riyadh, A.A.S.; Haftirman; Khairel, A.; Yarub, A.D. The influence of roughness on the wear and friction coefficient under dry and lubricated sliding. Int. Sci. J. Eng. Res. 2012, 3, 1–6. [Google Scholar]
- Zhang, C.; Fujii, M. Influence of wettability and mechanical properties of tribological performance of DLC coatings under water lubrication. Surf. J. Eng. Mater. Adv. Technol. 2015, 5, 110–123. [Google Scholar] [CrossRef]
- Khadem, M.; Penkov, O.V.; Jais, J.; Bae, S.M.; Dhandapani, V.S.; Kang, B.; Kim, D.E. Formation of discrete periodic nanolayered coatings through tailoring of nanointerfaces—Toward zero macroscale wear. Sci. Adv. 2021, 7, eabk1224. [Google Scholar] [CrossRef]
- Akasaka, T.; Yokoyama, A.; Matsuoka, M.; Hashimoto, T.; Watari, F. Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations. Mater. Sci. Eng. C 2010, 30, 391–399. [Google Scholar] [CrossRef]
- Feng, B.; Weng, J.; Yang, B.C.; Qu, S.X.; Zhang, X.D. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 2003, 24, 4663–4670. [Google Scholar] [CrossRef] [PubMed]
Load | Counter Tip | Stoke Length | Temperature | Relative Humidity | Sliding Speed |
---|---|---|---|---|---|
10 mN | 1 mm diameter Al2O3 ball | 4 mm | Room temperature | 40% | 2 mm/s |
Sample | D Peak Position cm−1 | G Peak Position cm−1 | Ra (nm) | Rz (nm) | Rq (nm) | Rpv (nm) |
---|---|---|---|---|---|---|
200 W | 1410 | 1582 | 1.32 | 9.03 | 1.74 | 12.42 |
300 W | 1406 | 1581 | 0.99 | 4.57 | 1.02 | 6.59 |
400 W | 1401 | 1578 | 1.24 | 5.90 | 1.31 | 11.33 |
500 W | 1378 | 1572 | 3.3 | 20.4 | 4.20 | 21.82 |
Sample | Average CoF | Wear Rate (10−7 mm3/N*mm) |
---|---|---|
200 W | 0.50 | 1.35 |
300 W | 0.49 | 0.47 |
400 W | 0.45 | 0.54 |
500 W | 0.71 | 5.58 |
Substrate Mesh Size (mm) | Coating Element Type | Substrate Element Type | Counter Tip Element Type | Contact Pressure (MPa) | Computation Time (Minutes) |
---|---|---|---|---|---|
0.05 | S4R | C3D8R | C3D10 | 2.90 | 13 |
0.025 | S4R | C3D8R | C3D10 | 8.05 | 154 |
Gradient | S4R | C3D8R | C3D10 | 205.11 | 1152 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhandapani, V.S.; Subbiah, R.; Thangavel, E.; Kim, C.-L.; Kang, K.-M.; Veeraraghavan, V.; Park, K.; Kim, D.-E.; Park, D.; Kim, B. Effect of Target Power on Microstructure, Tribological Performance and Biocompatibility of Magnetron Sputtered Amorphous Carbon Coatings. Materials 2023, 16, 5788. https://doi.org/10.3390/ma16175788
Dhandapani VS, Subbiah R, Thangavel E, Kim C-L, Kang K-M, Veeraraghavan V, Park K, Kim D-E, Park D, Kim B. Effect of Target Power on Microstructure, Tribological Performance and Biocompatibility of Magnetron Sputtered Amorphous Carbon Coatings. Materials. 2023; 16(17):5788. https://doi.org/10.3390/ma16175788
Chicago/Turabian StyleDhandapani, Vishnu Shankar, Ramesh Subbiah, Elangovan Thangavel, Chang-Lae Kim, Kyoung-Mo Kang, Veeravazhuthi Veeraraghavan, Kwideok Park, Dae-Eun Kim, Dongkyou Park, and Byungki Kim. 2023. "Effect of Target Power on Microstructure, Tribological Performance and Biocompatibility of Magnetron Sputtered Amorphous Carbon Coatings" Materials 16, no. 17: 5788. https://doi.org/10.3390/ma16175788
APA StyleDhandapani, V. S., Subbiah, R., Thangavel, E., Kim, C. -L., Kang, K. -M., Veeraraghavan, V., Park, K., Kim, D. -E., Park, D., & Kim, B. (2023). Effect of Target Power on Microstructure, Tribological Performance and Biocompatibility of Magnetron Sputtered Amorphous Carbon Coatings. Materials, 16(17), 5788. https://doi.org/10.3390/ma16175788