Effect of Grain Orientation on Microstructure and Mechanical Properties of FeCoCrNi High-Entropy Alloy Produced via Laser Melting Deposition
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Microstructure Characterization and Mechanical Property
3. Results and Discussion
3.1. Microstructure of the FeCoCrNi HEA
3.2. Mechanical Properties of Bulk and Single Wall
4. Discussion
5. Conclusions
- (1).
- The bulk structure of FeCoCrNi-LMD exhibits higher microhardness, tensile strength, ductility, and strain hardening exponent in comparison to the single-wall structure. These findings suggest that altering the scanning pattern leads to enhanced mechanical properties of FeCoCrNi-LMD.
- (2).
- The alteration in the scanning strategy has effectively improved the weak area. The single wall, subjected to a rolling deformation of 25%, exhibited cracking, whereas the bulk material remained crack-free even at a deformation level of 50%.
- (3).
- In comparison to the single-wall structure, the bulk structure displays a more uniform distribution of dislocations and lower dislocation density. This disparity serves as one of the primary reasons for the increased susceptibility of the single wall to cracking.
- (4).
- In the single-wall structure, grains tend to grow along the additive direction, resulting in elevated texture strength and notable anisotropy. However, during plastic deformation, there is inadequate coordination among grains, and the continuity between them cannot be sustained. Consequently, the material is prone to the formation of voids at grain boundaries, ultimately leading to cracking.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Z.; Jia, N.; Wang, H.; Yan, H.; Shen, Y. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature. J. Mater. Sci. Technol. 2021, 86, 158–170. [Google Scholar] [CrossRef]
- Sarkar, S.; Sarswat, P.K.; Free, M.L. Elevated temperature corrosion resistance of additive manufactured single phase AlCoFeNiTiV0.9Sm0.1 and AlCoFeNiV0.9Sm0.1 HEAs in a simulated syngas atmosphere. Addit. Manuf. 2019, 30, 100902. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, J.; Zhang, M.; Wang, X.; Gong, P.; Zhang, J.; Liu, J. Effect of the grain size on the corrosion behavior of CoCrFeMnNi HEAs in a 0.5 M H2SO4 solution. J. Alloys Compd. 2021, 858, 157712. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.; Yu, Y.; Zhang, Z.; Zhu, S.; Lou, X.; Wang, Z. Study of high temperature friction and wear performance of (CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding. Surf. Coat. Technol. 2020, 384, 125337. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Erdogan, A.; Doleker, K.M.; Zeytin, S. Effect of Al and Ti on High-Temperature Oxidation Behavior of CoCrFeNi-Based High-Entropy Alloys. JOM 2019, 71, 3499–3510. [Google Scholar] [CrossRef]
- Li, C.; Xue, Y.; Hua, M.; Cao, T.; Ma, L.; Wang, L. Microstructure and mechanical properties of Al x Si 0.2 CrFeCoNiCu 1−x high-entropy alloys. Mater. Des. 2016, 90, 601–609. [Google Scholar] [CrossRef]
- Rao, J.; Ocelík, V.; Vainchtein, D.; Tang, Z.; Liaw, P.; De Hosson, J. The fcc-bcc crystallographic orientation relationship in AlxCoCrFeNi high-entropy alloys. Mater. Lett. 2016, 176, 29–32. [Google Scholar] [CrossRef]
- Gao, M.C.; Zhang, B.; Guo, S.M.; Qiao, J.W.; Hawk, J.A. High-Entropy Alloys in Hexagonal Close-Packed Structure. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2015, 47, 3322–3332. [Google Scholar] [CrossRef]
- Lin, D.; Xu, L.; Han, Y.; Zhang, Y.; Jing, H.; Zhao, L.; Minami, F. Structure and mechanical properties of a FeCoCrNi high-entropy alloy fabricated via selective laser melting. Intermetallics 2020, 127, 106963. [Google Scholar] [CrossRef]
- Xiang, S.; Li, J.; Luan, H.; Amar, A.; Lu, S.; Li, K.; Zhang, L.; Liu, X.; Le, G.; Wang, X.; et al. Effects of process parameters on microstructures and tensile properties of laser melting deposited CrMnFeCoNi high entropy alloys. Mater. Sci. Eng. A 2019, 743, 412–417. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Rab, S. Role of additive manufacturing applications towards environmental sustainability. Adv. Ind. Eng. Polym. Res. 2021, 4, 312–322. [Google Scholar] [CrossRef]
- Hu, Z.; Zhu, H.; Zhang, H.; Zeng, X. Experimental investigation on selective laser melting of 17-4PH stainless steel. Optics Laser Technol. 2017, 87, 17–25. [Google Scholar] [CrossRef]
- Li, H.; Lee, T.; Zheng, W.; Lu, Y.; Yin, H.; Yang, J.; Huang, Y.; Sun, J. Characterization of residual stress in laser melting deposited CoCrFeMnNi high entropy alloy by neutron diffraction. Mater. Lett. 2020, 263, 127247. [Google Scholar] [CrossRef]
- Cui, Z.; Mi, Y.; Qiu, D.; Dong, P.; Qin, Z.; Gong, D.; Li, W. Microstructure and mechanical properties of additively manufactured CrMnFeCoNi high-entropy alloys after ultrasonic surface rolling process. J. Alloys Compd. 2021, 887, 161393. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, C.; Zhang, S.; Qiao, R.; Zhang, J.; Abdullah, A.O. Scanning velocity influence on microstructure evolution and mechanical properties of laser melting deposited 12CrNi2 low alloy steel. Vacuum 2020, 177, 109387. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Y.; Qu, N.; Han, T.; Liao, M.; Lai, Z.; Zhu, J. Effect of fabrication methods on microstructures, mechanical properties and strengthening mechanisms of Fe0.25CrNiAl medium-entropy alloy. J. Alloys Compd. 2021, 888, 161526. [Google Scholar] [CrossRef]
- Cai, Y.; Shan, M.; Cui, Y.; Manladan, S.M.; Lv, X.; Zhu, L.; Sun, D.; Wang, T.; Han, J. Microstructure and properties of FeCoCrNi high entropy alloy produced by laser melting deposition. J. Alloys Compd. 2021, 887, 161323. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Y.; Manladan, S.M.; Cui, Y.; Geng, K.; Cai, Y.; Han, J. Effects of Laser Powers on Microstructures and Mechanical Properties of Al0.5FeCoCrNi High-Entropy Alloys Fabricated by Laser Melting Deposition. Materials 2022, 15, 2894. [Google Scholar] [CrossRef]
- Esmaeilizadeh, R.; Keshavarzkermani, A.; Ali, U.; Mahmoodkhani, Y.; Behravesh, B.; Jahed, H.; Bonakdar, A.; Toyserkani, E. Customizing mechanical properties of additively manufactured Hastelloy X parts by adjusting laser scanning speed. J. Alloys Compd. 2020, 812, 152097. [Google Scholar] [CrossRef]
- Cai, Y.; Li, X.; Xia, H.; Cui, Y.; Manladan, S.M.; Zhu, L.; Shan, M.; Sun, D.; Wang, T.; Lv, X.; et al. Fabrication of laminated high entropy alloys using differences in laser melting deposition characteristics of FeCoCrNi and FeCoCrNiAl. J. Manuf. Process. 2021, 72, 294–308. [Google Scholar] [CrossRef]
- Szost, B.A.; Terzi, S.; Martina, F.; Boisselier, D.; Prytuliak, A.; Pirling, T.; Hofmann, M.; Jarvis, D.J. A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti–6Al–4V components. Mater. Des. 2016, 89, 559–567. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, K.; Huang, J.; Hosseini, S.R.E.; Li, Z. Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718. Mater. Des. 2016, 90, 586–594. [Google Scholar] [CrossRef]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; Van Humbeeck, J.; Kruth, J.-P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010, 58, 3303–3312. [Google Scholar] [CrossRef]
- Chew, Y.; Bi, G.; Zhu, Z.; Ng, F.; Weng, F.; Liu, S.; Nai, S.; Lee, B. Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy. Mater. Sci. Eng. A 2019, 744, 137–144. [Google Scholar] [CrossRef]
- Amirjan, M.; Sakiani, H. Effect of scanning strategy and speed on the microstructure and mechanical properties of selective laser melted IN718 nickel-based superalloy. Int. J. Adv. Manuf. Technol. 2019, 103, 1769–1780. [Google Scholar] [CrossRef]
- Zhao, X.; Dong, S.; Yan, S.; Liu, X.; Liu, Y.; Xia, D.; Lv, Y.; He, P.; Xu, B.; Han, H. The effect of different scanning strategies on microstructural evolution to 24CrNiMo alloy steel during direct laser deposition. Mater. Sci. Eng. A 2020, 771, 138557. [Google Scholar] [CrossRef]
- Wan, H.; Zhou, Z.; Li, C.; Chen, G.; Zhang, G. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting. J. Mater. Sci. Technol. 2018, 34, 1799–1804. [Google Scholar] [CrossRef]
- Hu, G.; Cai, X.; Rong, Y. Fundamentals of Materials Science; Shanghai Jiaotong University Press: Shanghai, China, 2010; pp. 174–175, 229–254. [Google Scholar]
- Zhan, X.; Lin, X.; Gao, Z.; Qi, C.; Zhou, J.; Gu, D. Modeling and simulation of the columnar-to-equiaxed transition during laser melting deposition of Invar alloy. J. Alloys Compd. 2018, 755, 123–134. [Google Scholar] [CrossRef]
- Zheng, G.; Tang, B.; Zhou, Q.; Mao, X.; Dang, R. Development of a Flow Localization Band and Texture in a Forged Near-α Titanium Alloy. Metals 2020, 10, 121. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, D.; He, X.; Wang, W.; Zhang, H.; Dong, P.; Li, C.; Li, Y.; Zhou, J.; Liu, Z.; et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect. Mater. Sci. Eng. A 2018, 723, 212–220. [Google Scholar] [CrossRef]
- Gussev, M.N.; Field, K.G.; Busby, J.T. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels. J. Nucl. Mater. 2015, 460, 139–152. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, X.; Tu, W.; Yan, Y.; Yu, F. Plastic deformation mechanisms in face-centered cubic materials with low stacking fault energy. Mater. Sci. Eng. A 2016, 676, 241–245. [Google Scholar] [CrossRef]
- Hertzberg, R.W.; Saunders, H. Deformation and Fracture Mechanics of Engineering Materials. J. Press. Vessel. Technol. Trans. ASME 1985, 107, 309–311. [Google Scholar] [CrossRef]
- Pham, M.-S.; Dovgyy, B.; Hooper, P.A.; Gourlay, C.M.; Piglione, A. The role of side-branching in microstructure development in laser powder-bed fusion. Nat. Commun. 2020, 11, 749. [Google Scholar] [CrossRef]
- Zhu, L.; Geng, K.; Wang, J.; Sun, D.; Shan, M.; Lu, Y.; Zhang, X.; Cai, Y.; Han, J.; Jiang, Z. Strain hardening and strengthening mechanism of laser melting deposition (LMD) additively manufactured FeCoCrNiAl0.5 high-entropy alloy. Mater. Charact. 2022, 194, 112365. [Google Scholar] [CrossRef]
- Qin, G.; Chen, R.; Zheng, H.; Fang, H.; Wang, L.; Su, Y.; Guo, J.; Fu, H. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition. J. Mater. Sci. Technol. 2019, 35, 578–583. [Google Scholar] [CrossRef]
- Jin, B.; Zhang, N.; Guan, S.; Zhang, Y.; Li, D. Microstructure and properties of laser re-melting FeCoCrNiAl0.5Six high-entropy alloy coatings. Surf. Coat. Technol. 2018, 349, 867–873. [Google Scholar] [CrossRef]
Element | Cr | Fe | Ni | Co |
---|---|---|---|---|
wt.% | 22.60 | 24.05 | 25.93 | Bal. |
at% | 24.52 | 24.30 | 24.93 | Bal. |
Element | Cr | Ni | Mn | Si | Co | N | C | Fe |
---|---|---|---|---|---|---|---|---|
wt.% | 19.90 | 7.96 | 0.98 | 0.30 | 0.21 | 0.09 | 0.05 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, F.; Liu, S.; Zhang, X.; Shan, M.; Peng, C.; Jia, F.; Han, J.; Cai, Y. Effect of Grain Orientation on Microstructure and Mechanical Properties of FeCoCrNi High-Entropy Alloy Produced via Laser Melting Deposition. Materials 2023, 16, 5963. https://doi.org/10.3390/ma16175963
Ge F, Liu S, Zhang X, Shan M, Peng C, Jia F, Han J, Cai Y. Effect of Grain Orientation on Microstructure and Mechanical Properties of FeCoCrNi High-Entropy Alloy Produced via Laser Melting Deposition. Materials. 2023; 16(17):5963. https://doi.org/10.3390/ma16175963
Chicago/Turabian StyleGe, Fuyu, Shuai Liu, Xin Zhang, Mengdie Shan, Cheng Peng, Fanghui Jia, Jian Han, and Yangchuan Cai. 2023. "Effect of Grain Orientation on Microstructure and Mechanical Properties of FeCoCrNi High-Entropy Alloy Produced via Laser Melting Deposition" Materials 16, no. 17: 5963. https://doi.org/10.3390/ma16175963
APA StyleGe, F., Liu, S., Zhang, X., Shan, M., Peng, C., Jia, F., Han, J., & Cai, Y. (2023). Effect of Grain Orientation on Microstructure and Mechanical Properties of FeCoCrNi High-Entropy Alloy Produced via Laser Melting Deposition. Materials, 16(17), 5963. https://doi.org/10.3390/ma16175963