The Impact of Milled Wood Waste Bottom Ash (WWBA) on the Properties of Conventional Concrete and Cement Hydration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Their Properties
2.2. Mix Design and Specimen Preparation
3. Results
3.1. Analysis of Physical, Mechanical Properties and Durability of Concrete
3.2. The Impact of WWBA on Cement Hydration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Environment Programme. 2020 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector; United Nations Environment Programme: Nairobi, Kenya, 2020; p. 80. [Google Scholar]
- Anuja, N.; Akalya, B.; Karthika, R.; Venkateshwari, P. Controlling of CO2 emission in buildings: An overview. Int. J. Civ. Eng. Constr. 2022, 1, 1–5. [Google Scholar] [CrossRef]
- Supriya; Chaudhury, R.; Sharma, U.; Thapliyal, P.C.; Singh, L.P. Low-CO2 emission strategies to achieve net zero target in cement sector. J. Clean. Prod. 2023, 417, 137466. [Google Scholar] [CrossRef]
- NRDC Report. Lightening Emissions in Heavy Industry: Reducing CO2 in Cement, Concrete, Steel, and Aluminum Can Help Keep Us on a Path to 1.5 Degrees. 2022. Available online: https://www.nrdc.org/resources/lightening-emissions-heavy-industry-reducing-co2-cement-concrete-steel-and-aluminum-can (accessed on 28 August 2023).
- Sanjuán, M.Á.; Andrade, C.; Mora, P.; Zaragoza, A. Carbon dioxide uptake by cement-based materials: A Spanish case study. Appl. Sci. 2020, 10, 339. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Andrade, C.; Mora, P.; Zaragoza, A. Carbon dioxide uptake by mortars and concretes made with Portuguese cements. Appl. Sci. 2020, 10, 646. [Google Scholar] [CrossRef]
- Matos, A.M.; Sousa-Coutinho, J. Municipal solid waste incineration bottom ash recycling in concrete: Preliminary approach with Oporto wastes. Constr. Build. Mater. 2022, 323, 126548. [Google Scholar] [CrossRef]
- Baikerikar, A.; Mudalgi, S.; Vinayaka Ram, V. Utilization of waste glass powder and waste glass sand in the production of Eco-Friendly concrete. Constr. Build. Mater. 2023, 377, 131078. [Google Scholar] [CrossRef]
- Hamada, H.M.; Shi, J.; Abed, F.; Al Jawahery, M.S.; Majdi, A.; Yousif, S.T. Recycling solid waste to produce eco-friendly ultra-high performance concrete: A review of durability, microstructure and environment characteristics. Sci. Total Environ. 2023, 876, 162804. [Google Scholar] [CrossRef]
- Özkılıç, Y.O.; Zeybek, Ö.; Bahrami, A.; Çelik, A.İ.; Mydin, M.A.O.; Karalar, M.; Hakeem, I.Y.; Roy, K.; Jagadesh, P. Optimum usage of waste marble powder to reduce use of cement toward eco-friendly concrete. J. Mater. Res. Technol. 2023, 25, 4799–4819. [Google Scholar] [CrossRef]
- Garcia, M.D.L.; Sousa-Coutinho, J. Strength and durability of cement with forest waste bottom ash. Constr. Build. Mater. 2013, 41, 897–910. [Google Scholar] [CrossRef]
- Kathirvel, P.; Anik, G.A.; Kaliyaperumal, S.R.M. Effect of partial replacement of cement with Prosopis juliflora ash on the strength and microstructural characteristics of cement concrete. Constr. Build. Mater. 2019, 225, 273–282. [Google Scholar] [CrossRef]
- Shahnaz, A.; Shahzadi, P.; Mujahid, A.; Khan, M.S.; Abbass, A.; Kanwal, A. Utilization of bio materials as pozzolanic material for partial replacement of cement. J. Chem. Mater. Res. 2016, 5, 85–91. [Google Scholar]
- Nascimento, L.C.; Junior, G.B.; de Castro Xavier, G.; Monteiro, S.N.; Vieira, C.M.F.; de Azevedo, A.R.G.; Alexandre, J. Use of wood bottom ash in cementitious materials: A review. J. Mater. Res. Technol. 2023, 23, 4226–4243. [Google Scholar] [CrossRef]
- Thi, K.-D.T.; Liao, M.-C.; Vo, D.-H. The characteristics of alkali-activated slag-fly ash incorporating the high volume wood bottom ash: Mechanical properties and microstructures. Constr. Build. Mater. 2023, 394, 132240. [Google Scholar] [CrossRef]
- Tifase, M.A.A.S.; Uche, O.A.U. Engineering properties of industrial wood waste ash-concrete. Int. J. Adv. Constr. Eng. 2017, 1, 1–10. [Google Scholar]
- Tamanna, K.; Raman, S.N.; Jamil, M.; Hamid, R. Utilization of wood waste ash in construction technology: A review. Construct. Build. Mater. 2020, 237, 117654. [Google Scholar] [CrossRef]
- Cheah, C.B.; Ramli, M. The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: An overview. Resour. Conserv. Recycl. 2011, 55, 669–685. [Google Scholar] [CrossRef]
- Naik, T.R.; Kraus, R.N.; Siddique, R. Controlled low strength materials containing mixtures of coal ash and new pozzolanic material. ACI Mater. J. 2003, 100, 208–215. [Google Scholar]
- Siddique, R. Utilization of wood ash in concrete manufacturing. Resour. Conserv. Recycl. 2012, 67, 27–33. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mishra, M.; Suganya, O. The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview. Ain Shams Eng. J. 2015, 6, 429–437. [Google Scholar] [CrossRef]
- Teixeira, E.R.; Camoes, A.; Branco, F.G. Valorisation of wood fly ash on concrete. Resour. Conserv. Recycl. 2019, 145, 292–310. [Google Scholar] [CrossRef]
- Ramos, T.; Matos, A.M.; Sousa-Coutinho, J. Mortar with wood waste ash: Mechanical strength carbonation resistance and ASR expansion. Constr. Build. Mater. 2013, 49, 343–351. [Google Scholar] [CrossRef]
- Kumar, P.G.; Kumar, K.S. Studies on strength characteristics of fibre reinforced concrete with wood waste ash. Int. Res. J. Eng. Technol. 2015, 2, 181–187. [Google Scholar]
- Chowdhury, S.; Maniar, A.; Suganya, O.M. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters. J. Adv. Res. 2015, 6, 907–913. [Google Scholar] [CrossRef]
- Horsakulthai, V.; Paopongpaiboon, K. Strength, chloride permeability and corrosion of coarse fly ash concrete with Bagasse-Rice Husk-Wood Ash additive. Am. J. Appl. Sci. 2013, 10, 239–246. [Google Scholar] [CrossRef]
- Cheah, C.B.; Ramli, M. Mechanical strength, durability and drying shrinkage of structural mortar containing HCWA as partial replacement of cement. Construct. Build. Mater. 2012, 30, 320–329. [Google Scholar] [CrossRef]
- Rajamma, R.; Senff, L.; Ribeiro, M.J.; Labrincha, J.A.; Ball, R.J.; Allen, G.C.; Ferreira, V.M. Biomass fly ash effect on fresh and hardened state properties of cement based materials. Compos. B Eng. 2015, 77, 1–9. [Google Scholar] [CrossRef]
- Stolz, J.; Boluk, Y.; Bindiganavile, V. Wood ash as a supplementary cementing material in foams for thermal and acoustic insulation. Construct. Build. Mater. 2019, 215, 104–113. [Google Scholar] [CrossRef]
- Berra, M.; Mangialardi, T.; Paolini, A.E. Reuse of woody biomass fly ash in cement-based materials. Construct. Build. Mater. 2015, 76, 286–296. [Google Scholar] [CrossRef]
- De Souza, D.J.; Antunes, L.R.; Sanchez, L.F.M. The evaluation of Wood Ash as a potential preventive measure against alkali-silica reaction induced expansion and deterioration. J. Clean. Prod. 2022, 358, 131984. [Google Scholar] [CrossRef]
- Okeyinka, O.M.; Oladeja, O.A. The influence of calcium carbonate as an admixture on the properties of wood ash cement concrete. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 432–437. [Google Scholar]
- Huang, C.H.; Lin, S.K.; Chang, C.S.; Chen, H.J. Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash. Constr. Build. Mater. 2013, 46, 71–78. [Google Scholar] [CrossRef]
- Ayobami, A.B. Performance of wood bottom ash in cement-based applications and comparison with other selected ashes: Overview. Resour. Conserv. Recycl. 2021, 166, 105351. [Google Scholar] [CrossRef]
- Bhat, J.A. Mechanical behaviour of self compacting concrete: Effect of wood ash and coal ash as partial cement replacement. Mater. Today Proc. 2021, 42, 1470–1476. [Google Scholar] [CrossRef]
- Rosales, J.; Cabrera, M.; Lopez-Alonso, M.; Díaz-López, J.L.; Agrela, F. 9—Specialized concrete made of processed biomass ash: Lightweight, self-compacting, and geopolymeric concrete. In The Structural Integrity of Recycled Aggregate Concrete Produced with Fillers and Pozzolans; Awoyera, P.O., Thomas, C., Kirgiz, M.S., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Southton, UK, 2022; pp. 199–239. [Google Scholar]
- Medina, J.M.; Sáez del Bosque, I.F.; Frías, M.; Sánchez de Rojas, M.I.; Medina, C. Durability of new blended cements additioned with recycled biomass bottom ASH from electric power plants. Constr. Build. Mater. 2019, 225, 429–440. [Google Scholar] [CrossRef]
- Conte, S.; Buonamico, D.; Magni, T.; Arletti, R.; Dondi, M.; Guarini, G.; Zanelli, C. Recycling of bottom ash from biomass combustion in porcelain stoneware tiles: Effects on technological properties, phase evolution and microstructure. J. Eur. Ceram. 2022, 42, 5153–5163. [Google Scholar] [CrossRef]
- Soares, E.G.; Castro-Gomes, J. The role of biomass bottom ash in Carbonated Reactive Magnesia Cement (CRMC) for CO2 mineralisation. J. Clean. Prod. 2022, 380, 135092. [Google Scholar] [CrossRef]
- Beltrán, M.G.; Agrela, F.; Barbudo, A.; Ayuso, J.; Ramírez, A. Mechanical and durability properties of concretes manufactured with biomass bottom ash and recycled coarse aggregates. Constr. Build. Mater. 2014, 72, 231–238. [Google Scholar] [CrossRef]
- Cabrera, M.; Rosales, J.; Ayuso, J.; Estaire, J.; Agrela, F. Feasibility of using olive biomass bottom ash in the sub-bases of roads and rural paths. Constr. Build. Mater. 2018, 181, 266–275. [Google Scholar] [CrossRef]
- Kakali, G.; Tsivilis, S.; Aggeli, E.; Bati, M. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem. Concr. Res. 2000, 30, 1073–1077. [Google Scholar] [CrossRef]
- Weerdt, K.D.; Haha, M.B.; Saout, G.L.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 2011, 41, 279–291. [Google Scholar] [CrossRef]
- Hong, H.; Shen, X.D. Interaction effect of triisopropanolamine and glucose on the hydration of Portland cement. Constr. Build. Mater. 2014, 65, 360–366. [Google Scholar] [CrossRef]
- Cao, Y.; Tian, N.; Bahr, D.; Zavattieri, P.D.; Youngblood, J.; Moon, R.J.; Weiss, J. The influence of cellulose nanocrystals on the microstructure of cement paste. Cem. Concr. Comp. 2016, 74, 164–173. [Google Scholar] [CrossRef]
- Ozolinčius, R.; Armolaitis, K.; Mikšys, V.; Varnagirytė-Kabašinskienė, I. Recommendations for Compensating Wood Ash Fertilization, 2nd ed.; Girionys, Ministry of Environment of the Republic of Lithuania/Institute of Forestry of Lithuanian Research Centre for Agriculture and Forestry: Akademija, Lithuania, 2011; p. 17, (In Lithuanian with English summary). [Google Scholar]
- Ferraz, E.; Andrejkovičová, S.; Hajjaji, W.; Velosa, A.L.; Silva, A.S.; Rocha, F. Pozzolanic activity of metakaolins by the french standard of the modified chapelle test: A direct methodology. Acta Geodyn. Geomater. 2015, 12, 289–298. [Google Scholar] [CrossRef]
- NF P18-513; Addition Pour Béton Hydraulique—Métakaolin—Spécifications et Critères de Conformité. Association Française de Normalization: Paris, France, 2012.
- EN 1008:2002; Mixing Water for Concrete—Specification for Sampling, Testing and Assessing the Suitability of Water, Including Water Recovered from Processes in the Concrete Industry, as Mixing Water for Concrete. British Standards Institution, Her Majesty Stationery Office: London, UK, 2002.
- EN 14889-2:2006; Fibres for Concrete—Part 2: Polymer Fibres—Definitions, Specifications and Conformity. British Standards Institution: London, UK, 2006.
- EN 12390-2:2019; Testing Hardened Concrete—Part 2: Making and Curing Specimens for Strength Tests. British Standards Institution: London, UK, 2019.
- EN 12390-3:2019; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. British Standards Institution: London, UK, 2019.
- EN 12390-7:2019/AC:2020; Testing Hardened Concrete—Part 7: Density of Hardened Concrete. British Standards Institution: London, UK, 2020.
- LST 1428-17:2016; Concrete—Test Methods—Part 17: Determination of Frost Resistance to Volumetric Freezing and Thawing. Lithuanian Standards Board: Vilnius, Lithuania, 2016.
- LST 1974:2005; Application Rules of LST EN 206-1 Concrete. Part 1: Specification, Performance, Production and Conformity. Lithuanian Standards Board: Vilnius, Lithuania, 2005.
- Malaiskiene, J.; Costa, C.; Baneviciene, V.; Antonovic, V.; Vaiciene, M. The effect of nano SiO2 and spent fluid catalytic cracking catalyst on cement hydration and physical mechanical properties. Constr. Build. Mater. 2021, 299, 1–13. [Google Scholar] [CrossRef]
- Sharma, A. Investigation of properties of concrete incorporating wood ash as partial substitute of cement and waste foundry sand as a partial substitute of sand. Mater. Today Proc. 2023, 2214–7853. [Google Scholar] [CrossRef]
- Elinwa, A.U.; Mahmood, Y.A. Ash from timber waste as cement replacement material. Cem. Concr. Compos. 2002, 24, 219–222. [Google Scholar] [CrossRef]
- Hamid, Z.; Rafiq, S. An experimental study on behavior of wood ash in concrete as partial replacement of cement. Mater. Today Proc. 2021, 46, 3426–3429. [Google Scholar] [CrossRef]
- Rumman, R.; Kamal, M.R.; Bediwy, A.; Alam, M.S. Partially burnt wood fly ash characterization and its application in low-carbon mortar and concrete. Constr. Build. Mater. 2023, 402, 132946. [Google Scholar] [CrossRef]
- Abubakar, A.U.; Baharudin, K.S. Properties of concrete using Tanjung bin power plant coal bottom ash and fly ash. Int. J. Sustain. Constr. Eng. Technol. 2012, 3, 56–69. [Google Scholar]
- Nagrockienė, D.; Daugėla, A. Investigation into the properties of concrete modified with biomass combustion fly ash. Constr. Build. Mater. 2018, 174, 369–375. [Google Scholar] [CrossRef]
- Skripkiūnas, G.; Macijauskas, M.; Nagrockienė, D.; Daugėla, A. The influence of biomass fly ash on the plasticizing effects in cement pastes. Procedia Eng. 2017, 172, 1015–1022. [Google Scholar] [CrossRef]
- Sigvardsen, N.M.; Kirkelund, G.M.; Jensen, P.E.; Geiker, M.R.; Ottosen, L.M. Impact of production parameters on physiochemical characteristics of wood ash for possible utilisation in cement-based materials. Resour. Conserv. Recycl. 2019, 145, 230–240. [Google Scholar] [CrossRef]
- Kim, K.W.; Park, K.T.; Ates, F.; Kim, H.G.; Woo, B.H. Effect of pretreated biomass fly ash on the mechanical properties and durability of cement mortar. Case Stud. Constr. Mater. 2023, 18, e01754. [Google Scholar] [CrossRef]
Compound | Chemical Composition (wt%) | |
---|---|---|
CEM I 42.5 R | WWBA | |
SiO2 | 20.4 | 8.34 |
Al2O3 | 4.0 | 1.54 |
Fe2O3 | 3.6 | 0.95 |
CaO | 63.2 | 22.7 |
MgO | 2.4 | 2.57 |
SO3 | 3.1 | 2.79 |
K2O | 0.9 | 3.78 |
Na2O | 0.2 | 0.21 |
Cl | 0.05 | 0.27 |
CO2 | - | 53.7 |
Element | Elemental Composition (wt%) | |||
---|---|---|---|---|
Spectrum 1 | Spectrum 2 | Spectrum 3 | Spectrum 4 | |
C | 12.9 | 25.0 | 9.60 | 91.6 |
O | 50.5 | 48.1 | 54.0 | 4.0 |
Na | 0.60 | 0.12 | – | |
Mg | 1.37 | 0.58 | – | |
Al | 3.03 | 0.06 | – | |
Si | 10.0 | 0.19 | 35.3 | |
P | 1.25 | 0.13 | – | |
K | 3.31 | 1.58 | – | 2.97 |
Ca | 14.2 | 22.1 | 1.20 | |
Mn | 2.82 | 2.22 | – | |
Cl | – | – | – | 1.42 |
Bulk Density, g/cm3 | Water Absorption, % | d50, µm | d90, µm | Average Diameter, µm |
---|---|---|---|---|
0.6 | 44.1 | 16.2 | 59.7 | 24.2 |
Fraction | Characteristics | ||
---|---|---|---|
Particle Density, g/cm3 | Bulk Density, g/cm3 | Water Absorption, % | |
0/2 | 2.4 | 1.6 | 0.6 |
Density, kg/dm3 | Equivalent Diameter, mm | Length, mm | Tensile Strength, MPa |
---|---|---|---|
0.91 | 0.78 | 6 | 110 |
Mix Designation | Binders (Cement + WWBA) | Crushed Granite | Sand | PP Fiber | SP | W/B | Flow, mm | |
---|---|---|---|---|---|---|---|---|
Cement | WWBA | |||||||
BP0 | 300 | 0 | 1000 | 980 | 0.9 | 3.0 | 0.55 | 420 |
BP3 | 291 | 9 | 1000 | 980 | 0.9 | 3.0 | 0.55 | 420 |
BP6 | 282 | 18 | 1000 | 980 | 0.9 | 3.0 | 0.55 | 420 |
BP9 | 273 | 27 | 1000 | 980 | 0.9 | 3.0 | 0.55 | 420 |
BP12 | 264 | 36 | 1000 | 980 | 0.9 | 3.0 | 0.55 | 410 |
Designation of Concrete | BP0 | BP3 | BP6 | BP9 | BP12 |
---|---|---|---|---|---|
Change in compressive strength, % | +5.5 | +7.0 | +8.8 | +4.5 | +3.3 |
Appearance of specimens | No visible defects | ||||
Number of cycles | 150 |
Paste Designation | Time of the Second Maximum (h) | Heat after Hours of Hydration (J/g) | |||
---|---|---|---|---|---|
12 | 24 | 36 | 48 | ||
B0 | 10 h 00 min | 103.3 | 211.9 | 270.5 | 314.6 |
B6 | 11 h 15 min | 90.3 | 197.5 | 254.6 | 296.2 |
B12 | 11 h 48 min | 80.1 | 180.5 | 234.7 | 277.1 |
Paste Designation | Degree of Hydration (-) | |||
---|---|---|---|---|
12 | 24 | 36 | 48 | |
B0 | 32.8 | 67.4 | 86.0 | 100.0 |
B6 | 28.7 | 62.8 | 80.9 | 94.2 |
B12 | 25.5 | 57.4 | 74.6 | 88.1 |
Designation | Change in Weight, 110–170 °C, % | Change in Weight, 180–350 °C, % | Change in Weight, 430–560 °C, % | Portlandite Content in a Dry Specimen, % | Portlandite Content at the Equal Quantity of Cement, % | Change in Weight, 690–850 °C, % |
---|---|---|---|---|---|---|
After 7 days | ||||||
B0 | 5.91 | 4.08 | 4.36 | 22.6 | 22.6 | 0.49 |
B6 | 4.50 | 3.96 | 4.16 | 20.6 | 21.9 | 1.45 |
B12 | 5.50 | 3.84 | 3.60 | 17.9 | 20.3 | 2.12 |
After 28 days | ||||||
B0 | 3.49 | 3.73 | 3.77 | 18.7 | 18.7 | 0.80 |
B6 | 3.47 | 3.53 | 3.60 | 17.8 | 18.9 | 1.35 |
B12 | 3.51 | 3.52 | 3.47 | 17.1 | 19.4 | 2.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaičienė, M.; Malaiškienė, J.; Maqbool, Q. The Impact of Milled Wood Waste Bottom Ash (WWBA) on the Properties of Conventional Concrete and Cement Hydration. Materials 2023, 16, 6498. https://doi.org/10.3390/ma16196498
Vaičienė M, Malaiškienė J, Maqbool Q. The Impact of Milled Wood Waste Bottom Ash (WWBA) on the Properties of Conventional Concrete and Cement Hydration. Materials. 2023; 16(19):6498. https://doi.org/10.3390/ma16196498
Chicago/Turabian StyleVaičienė, Marija, Jurgita Malaiškienė, and Qaisar Maqbool. 2023. "The Impact of Milled Wood Waste Bottom Ash (WWBA) on the Properties of Conventional Concrete and Cement Hydration" Materials 16, no. 19: 6498. https://doi.org/10.3390/ma16196498
APA StyleVaičienė, M., Malaiškienė, J., & Maqbool, Q. (2023). The Impact of Milled Wood Waste Bottom Ash (WWBA) on the Properties of Conventional Concrete and Cement Hydration. Materials, 16(19), 6498. https://doi.org/10.3390/ma16196498