Electrochemical Impedance Analysis for Corrosion Rate Monitoring of Sol–Gel Protective Coatings in Contact with Nitrate Molten Salts for CSP Applications
Abstract
:1. Introduction
2. Methodology
2.1. Materials
2.1.1. Preparation of the Nitrate Salt Mixture and Steel Samples
2.1.2. Coating Preparation and Deposition
2.2. Electrochemical Impedance Corrosion Study
3. Results and Discussion
3.1. Electrochemical Impedance Corrosion Test
Corrosion Rate Estimation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Baeyens, J.; Degrève, J.; Cacères, G. Concentrated solar power plants: Review and design methodology. Renew. Sustain. Energy Rev. 2013, 22, 466–481. [Google Scholar] [CrossRef]
- Crespi, F.; Toscani, A.; Zani, P.; Sánchez, D.; Manzolini, G. Effect of passing clouds on the dynamic performance of a CSP tower receiver with molten salt heat storage. Appl. Energy 2018, 229, 224–235. [Google Scholar] [CrossRef]
- Grosu, Y.; Bondarchuk, O.; Faik, A. The effect of humidity, impurities and initial state on the corrosion of carbon and stainless steels in molten HitecXL salt for CSP application. Sol. Energy Mater. Sol. Cells 2017, 174, 34–41. [Google Scholar] [CrossRef]
- de Miguel, M.; Encinas-Sánchez, V.; Lasanta, M.; García-Martín, G.; Pérez, F. Corrosion resistance of HR3C to a carbonate molten salt for energy storage applications in CSP plants. Sol. Energy Mater. Sol. Cells 2016, 157, 966–972. [Google Scholar] [CrossRef]
- Grosu, Y.; Udayashankar, N.; Bondarchuk, O.; González-Fernández, L.; Faik, A. Unexpected effect of nanoparticles doping on the corrosivity of molten nitrate salt for thermal energy storage. Sol. Energy Mater. Sol. Cells 2018, 178, 91–97. [Google Scholar] [CrossRef]
- Encinas-Sánchez, V.; de Miguel, M.; García-Martín, G.; Lasanta, M.; Pérez, F. Corrosion resistance of Cr/Ni alloy to a molten carbonate salt at various temperatures for the next generation high-temperature CSP plants. Sol. Energy Mater. 2018, 171, 286–292. [Google Scholar] [CrossRef]
- Villada, C.; Bonk, A.; Bauer, T.; Bolívar, F. High-temperature stability of nitrate/nitrite molten salt mixtures under different atmospheres. Appl. Energy 2018, 226, 107–115. [Google Scholar] [CrossRef]
- García-Martín, G.; Lasanta, M.; Encinas-Sánchez, V.; de Miguel, M.; Pérez, F. Evaluation of corrosion resistance of A516 Steel in a molten nitrate salt mixture using a pilot plant facility for application in CSP plants. Sol. Energy Mater. Sol. Cells 2017, 161, 226–231. [Google Scholar] [CrossRef]
- Fernández, A.; Cortes, M.; Fuentealba, E.; Pérez, F. Corrosion properties of a ternary nitrate/nitrite molten salt in concentrated solar technology. Renew. Energy 2015, 80, 177–183. [Google Scholar] [CrossRef]
- Slusser, J.W.; Titcomb, J.B.; Heffelfinger, M.T.; Dunbobbin, B.R. Corrosion in Molten Nitrate-Nitrite Salts. J. Met. 1985, 37, 24–27. [Google Scholar] [CrossRef]
- Kong, Z.; Jin, Y.; Hossen, G.M.S.; Hong, S.; Wang, Y.; Vu, Q.-V.; Truong, V.-H.; Tao, Q.; Kim, S.-E. Experimental and theoretical study on mechanical properties of mild steel after corrosion. Ocean Eng. 2022, 246, 110652. [Google Scholar] [CrossRef]
- de Miguel, M.; Lasanta, M.; García-Martín, G.; Díaz, R.; Pérez, F. Temperature effect and alloying elements impact on the corrosion behaviour of the alloys exposed to molten carbonate environments for CSP application. Corros. Sci. 2022, 201, 110274. [Google Scholar] [CrossRef]
- García-Martin, G.; Lasanta, M.I.; de Miguel, M.T.; Sánchez, A.I.; Pérez-Trujillo, F.J. Corrosion Behavior of VM12-SHC Steel in Contact with Solar Salt and Ternary Molten Salt in Accelerated Fluid Conditions. Energies 2021, 14, 5903. [Google Scholar] [CrossRef]
- Goods, S.H.; Bradshaw, R.W. Corrosion of Stainless Steels and Carbon Steel by Molten Mixtures of Commercial Nitrate Salts. J. Mater. Eng. Perform. 2004, 13, 78–87. [Google Scholar] [CrossRef]
- Turchi, C.; Vidal, J.; Bauer, M. Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits. Sol. Energy 2018, 164, 38–46. [Google Scholar] [CrossRef]
- Walczak, M.; Pineda, F.; Fernández, G.; Mata-Torres, C.; Escobar, R.A. Materials corrosion for thermal energy storage systems in concentrated solar power plants. Renew. Sustain. Energy Rev. 2018, 86, 22–44. [Google Scholar] [CrossRef]
- Pizzolato, A.; Donato, F.; Verda, V.; Santarelli, M. CFD-based reduced model for the simulation of thermocline thermal energy storage systems. Appl. Therm. Eng. 2015, 76, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Dorcheh, A.S.; Durham, R.N.; Galetz, M.C. Corrosion behavior of stainless and low-chromium steels and IN625 in molten nitrate salts at 600 °C. Sol. Energy Mater. Sol. Cells 2016, 144, 109–116. [Google Scholar] [CrossRef]
- Agüero, A.; Audigié, P.; Rodríguez, S.; Encinas-Sánchez, V.; de Miguel, M.T.; Pérez, F.J. Protective coatings for high temperature molten salt heat storage systems in solar concentration power plants. AIP Conf. Proc. 2018, 2033, 090001. [Google Scholar] [CrossRef]
- Dorcheh, A.S.; Galetz, M. Slurry aluminizing: A solution for molten nitrate salt corrosion in concentrated solar power plants. Sol. Energy Mater. Sol. Cells 2016, 146, 8–15. [Google Scholar] [CrossRef]
- Audigié, P.; Encinas-Sánchez, V.; Juez-Lorenzo, M.; Rodríguez, S.; Gutiérrez, M.; Pérez, F.; Agüero, A. High temperature molten salt corrosion behavior of aluminide and nickel-aluminide coatings for heat storage in concentrated solar power plants. Surf. Coat. Technol. 2018, 349, 1148–1157. [Google Scholar] [CrossRef]
- Fähsing, D.; Oskay, C.; Meißner, T.; Galetz, M. Corrosion testing of diffusion-coated steel in molten salt for concentrated solar power tower systems. Surf. Coat. Technol. 2018, 354, 46–55. [Google Scholar] [CrossRef]
- Wang, D.; Bierwagen, G.P. Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 2009, 64, 327–338. [Google Scholar] [CrossRef]
- Berlin, I.J.; Lekshmy, S.S.; Ganesan, V.; Thomas, P.; Joy, K. Effect of Mn doping on the structural and optical properties of ZrO2 thin films prepared by sol–gel method. Thin Solid Films 2014, 550, 199–205. [Google Scholar] [CrossRef]
- Díaz-Parralejo, A.; Ortiz, A.; Caruso, R. Effect of sintering temperature on the microstructure and mechanical properties of ZrO2-3mol%Y2O3 sol–gel films. Ceram. Int. 2010, 36, 2281–2286. [Google Scholar] [CrossRef]
- Encinas-Sánchez, V.; Macías-García, A.; Pérez, F. Effect of withdrawal rate on the evolution of optical properties of dip-coated yttria-doped zirconia thin films. Ceram. Int. 2017, 43, 13094–13100. [Google Scholar] [CrossRef]
- Kirubaharan, A.K.; Kuppusami, P.; Priya, R.; Divakar, R.; Gupta, M.; Pandit, D.; Ningshen, S. Synthesis, microstructure and corrosion behavior of compositionally graded Ni-YSZ diffusion barrier coatings on inconel-690 for applications in high temperature environments. Corros. Sci. 2018, 135, 243–254. [Google Scholar] [CrossRef]
- Encinas-Sánchez, V.; Batuecas, E.; Garcia, A.M.; Mayo, C.; Díaz, R.; Perez-Trujillo, F.J. Corrosion resistance of protective coatings against molten nitrate salts for thermal energy storage and their environmental impact in CSP technology. Sol. Energy 2018, 176, 688–697. [Google Scholar] [CrossRef]
- Loghman-Estarki, M.; Razavi, R.S.; Jamali, H. Effect of molten V2O5 salt on the corrosion behavior of micro- and nano-structured thermal sprayed SYSZ and YSZ coatings. Ceram. Int. 2016, 42, 12825–12837. [Google Scholar] [CrossRef]
- Hajizadeh-Oghaz, M.; Razavi, R.S.; Ghasemi, A.; Valefi, Z. Na2SO4 and V2O5 molten salts corrosion resistance of plasma-sprayed nanostructured ceria and yttria co-stabilized zirconia thermal barrier coatings. Ceram. Int. 2016, 42, 5433–5446. [Google Scholar] [CrossRef]
- Liu, M.; Bell, S.; Segarra, M.; Tay, N.S.; Will, G.; Saman, W.; Bruno, F. A eutectic salt high temperature phase change material: Thermal stability and corrosion of SS316 with respect to thermal cycling. Sol. Energy Mater. Sol. Cells 2017, 170, 1–7. [Google Scholar] [CrossRef]
- Sarvghad, M.; Will, G.; Steinberg, T.A. Corrosion of steel alloys in molten NaCl+Na2SO4 at 700 °C for thermal energy storage. Sol. Energy Mater. Sol. Cells 2018, 179, 207–216. [Google Scholar] [CrossRef]
- Encinas-Sánchez, V.; de Miguel, M.T.; Lasanta, M.I.; García-Martín, G.; Pérez, F.J. Electrochemical impedance spectroscopy (EIS): An efficient technique for monitoring corrosion processes in molten salt environments in CSP applications. Sol. Energy Mater. Sol. Cells 2019, 191, 157–163. [Google Scholar] [CrossRef]
- Jagadeeswara-Rao, C.; Venkatesh, P.; Ningshen, S. Corrosion assessment of 9Cr-1Mo steel in molten LiCl-KCl eutectic salt by electrochemical methods. J. Nucl. Mater. 2019, 514, 114–122. [Google Scholar]
- Han, Y.; Wang, J.; Zhang, H.; Zhao, S.; Ma, Q.; Wang, Z. Electrochemical impedance spectroscopy (EIS): An efficiency method to monitor resin curing processes. Sens. Actuators A Phys. 2016, 250, 78–86. [Google Scholar] [CrossRef]
- Macdonald, J.R. Impedance spectroscopy: Old problems and new developments. Electrochim. Acta 1990, 35, 1483–1492. [Google Scholar] [CrossRef]
- Macdonald, D.D. Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1376–1388. [Google Scholar] [CrossRef]
- Montemor, M.; Simões, A.; Ferreira, M. Chloride-induced corrosion on reinforcing steel: From the fundamentals to the monitoring techniques. Cem. Concr. Compos. 2003, 25, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Zeng, S.; Zhang, H.; Li, J.; Cao, B. Electrochemical study on the corrosion behaviors of 316 SS in HITEC molten salt at different temperatures. Sol. Energy Mater. Sol. Cells 2018, 186, 200–207. [Google Scholar] [CrossRef]
- Encinas-Sánchez, V.; Lasanta, M.; de Miguel, M.; García-Martín, G.; Pérez, F. Corrosion monitoring of 321H in contact with a quaternary molten salt for parabolic trough CSP plants. Corros. Sci. 2021, 178, 109070. [Google Scholar] [CrossRef]
- Salinas-Solano, G.; Porcayo-Calderon, J.; Gonzalez-Rodriguez, J.; Salinas-Bravo, V.; Ascencio-Gutierrez, J.; Martinez-Gomez, L. High temperature corrosion of Inconel 600 in NaCl-KCl molten salts. Adv. Mater. Sci. Eng. 2014, 2014, 8. [Google Scholar] [CrossRef]
- Trinstancho-Reyes, J.; Sandoval-Jabalera, R.; Orozco-Carmona, V.; Almeraya-Calderón, F.; Chacón-Nava, J.; Gonzalez-Rodriguez, J.; Martínez-Villafañe, A. Electrochemical impedance spectroscopy investigation of alloy Inconel 718 in molten salts at high temperature. Int. J. Electrochem. Sci. 2011, 6, 419–431. [Google Scholar]
- Encinas-Sánchez, V.; Macías-García, A.; Díaz-Díez, M.; Brito, P.; Cardoso, D. Influence of the quality and uniformity of ceramic coatings on corrosion resistance. Ceram. Int. 2015, 41, 5138–5146. [Google Scholar] [CrossRef]
- Croll, S.G. The origin of residual internal stress in solvent-cast thermoplastic coatings. J. Appl. Polym. Sci. 1979, 23, 847–858. [Google Scholar] [CrossRef] [Green Version]
- Hamden, Z.; Boufi, S.; Conceição, D.; Ferraria, A.; Rego, A.B.D.; Ferreira, D.; Ferreira, L.V.; Bouattour, S. Li–N doped and codoped TiO2 thin films deposited by dip-coating: Characterization and photocatalytic activity under halogen lamp. Appl. Surf. Sci. 2014, 314, 910–918. [Google Scholar] [CrossRef]
- Fernández, A.; Lasanta, M.; Pérez, F. Molten salt corrosion of stainless steels and low-Cr steel in CSP plants. Oxid. Met. 2012, 78, 329–348. [Google Scholar] [CrossRef]
- Fuqiang, W.; Ziming, C.; Jianyu, T.; Yuan, Y.; Yong, S.; Linhua, L. Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 79, 1314–1328. [Google Scholar] [CrossRef]
- Encinas-Sánchez, V.; Macías-García, A.; Díaz-Díez, M.; Díaz-Parralejo, A. Characterization of sol–gel coatings deposited on a mechanically treated stainless steel by using a simple non-destructive electrical method. J. Ceram. Soc. Jpn. 2016, 124, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Morrow, J.; Tejedor-Anderson, M.I.; Anderson, M.A.; Ruotolo, L.A.; Pfefferkorn, F.E. Sol-gel synthesis of ZrO2 coatings on micro end mills with sol-gel processing. J. Micro Nano-Manuf. 2014, 2, 041002–041012. [Google Scholar] [CrossRef]
- Ni, C.; Lu, L.; Zeng, C.; Niu, Y. Evaluation of corrosion resistance of aluminium coating with and without annealing against molten carbonate using electrochemical impedance spectroscopy. J. Power Sources 2014, 261, 162–169. [Google Scholar] [CrossRef]
- Fernandez, A.; Rey, A.; Lasanta, I.; Mato, S.; Brady, M.; Pérez, F.J. Corrosion of alumina-forming austenitic steel in molten nitrate salts by gravimetric analysis and impedance spectroscopy. Mater. Corros. 2014, 65, 267–275. [Google Scholar] [CrossRef]
- Omar, S.; Repp, F.; Desimone, P.M.; Weinkamer, R.; Wagermaier, W.; Ceré, S.; Ballarre, J. Sol–gel hybrid coatings with strontium-doped 45S5 glass particles for enhancing the performance of stainless steel implants: Electrochemical, bioactive and in vivo response. J. Non-Cryst. Solids 2015, 425, 1–10. [Google Scholar] [CrossRef]
- ASTM G102; Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. ASTM: West Conshohocken, PA, USA, 1994.
- Stern, M.; Geary, A.L. Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves. J. Electrochem. Soc. 1957, 104, 56–63. [Google Scholar] [CrossRef]
- Ruiz-Cabañas, F.J.; Prieto, C.; Osuna, R.; Madina, V.; Fernández, A.I.; Cabeza, L.F. Corrosion testing device for in-situ corrosion characterization in operational molten salts storage tanks: A516 Gr70 carbon steel performance under molten salts exposure. Sol. Energy Mater. Sol. Cells 2016, 157, 383–392. [Google Scholar] [CrossRef]
Chemicals | Cl− | SO42− | CO32− |
---|---|---|---|
NaNO3 | 0.02 | 0.005 | 0.02 |
KNO3 | 0.015 | <0.0005 | <0.02 |
Time, h | Re, Ω | Rt, Ω | Cdl, Ω−1·sn | ndl | Rcp, Ω | Ccp, Ω−1·sn | ncp |
---|---|---|---|---|---|---|---|
24 | 7.557 | 13.87 | 1.506·10−3 | 0.777 | 14488 | 1.483·10−3 | 0.731 |
72 | 7.095 | 29.09 | 1.973·10−3 | 0.748 | 2526 | 1.884·10−3 | 0.711 |
500 | 6.171 | 33.99 | 1.632·10−3 | 0.804 | 1657 | 3.060·10−3 | 0.738 |
1000 | 5.065 | 11.81 | 3.014·10−3 | 0.794 | 595 | 5.982·10−3 | 0.669 |
1500 | 6.327 | 6.64 | 4.350·10−3 | 0.808 | 261 | 1.021·10−2 | 0.615 |
2000 | 5.072 | 6.65 | 4.440·10−3 | 0.809 | 188 | 1.195·10−2 | 0.610 |
Corrosion Rate, mm·yr−1 | Recommendation |
---|---|
>1275 | Completely destroyed within days |
127–1274 | Not recommended for service greater than 1 month |
64–126 | Not recommended for service greater than 1 year |
14–63 | Caution recommended, based on the specific application |
0.4–13 | Recommended for long-term service |
<0.3 | Recommended for long-term service; no corrosion, other than as a result of surface cleaning, was evidenced |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Encinas-Sánchez, V.; Macías-García, A.; de Miguel, M.T.; Pérez, F.J.; Rodríguez-Rego, J.M. Electrochemical Impedance Analysis for Corrosion Rate Monitoring of Sol–Gel Protective Coatings in Contact with Nitrate Molten Salts for CSP Applications. Materials 2023, 16, 546. https://doi.org/10.3390/ma16020546
Encinas-Sánchez V, Macías-García A, de Miguel MT, Pérez FJ, Rodríguez-Rego JM. Electrochemical Impedance Analysis for Corrosion Rate Monitoring of Sol–Gel Protective Coatings in Contact with Nitrate Molten Salts for CSP Applications. Materials. 2023; 16(2):546. https://doi.org/10.3390/ma16020546
Chicago/Turabian StyleEncinas-Sánchez, V., A. Macías-García, M. T. de Miguel, F. J. Pérez, and J. M. Rodríguez-Rego. 2023. "Electrochemical Impedance Analysis for Corrosion Rate Monitoring of Sol–Gel Protective Coatings in Contact with Nitrate Molten Salts for CSP Applications" Materials 16, no. 2: 546. https://doi.org/10.3390/ma16020546