Influence of the Coordinated Ligand on the Optical and Electrical Properties in Titanium Phthalocyanine-Based Active Films for Photovoltaics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Thin-Film and Device Fabrication
3. Results and Discussion
3.1. Structural and Morphological Characterization
3.2. Evaluation of Optical Properties
3.3. Determination of Electrical Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, H.; Zhu, H.; Meng, Q.; Gong, X.; Hu, W. Organic photoresponse materials and devices. Chem. Soc. Rev. 2012, 41, 1754–1808. [Google Scholar] [CrossRef] [PubMed]
- Hains, A.W.; Liang, Z.; Woodhouse, M.A.; Greeg, B.A. Molecular Semiconductors in Organic Photovoltaic Cells. Chem. Rev. 2010, 110, 6689–6735. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Gomez, A.; Sanchez-Hernandez, C.M.; Fleitman-Levin, I.; Arenas-Alatorre, J.; Alonso-Huitrón, J.C.; Sánchez Vergara, M.E. Optical absorption and visible photoluminescence from thin films of silicon psthalocyanine derivatives. Materials 2014, 7, 6585–6603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, Y. Organic semiconductors for organic field-effect transistors. Sci. Technol. Adv. Mater. 2009, 10, 024313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, C.R.; Frisbie, C.D.; Da Silva Filho, D.A.; Brédas, J.-L.; Ewbank, P.C.; Mann, K.R. Introducción to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors. Chem. Mater. 2004, 16, 4436. [Google Scholar] [CrossRef]
- Dhar, J.; Salzner, U.; Patil, S. Trends in molecular design strategies for ambient stable n-channel organic files effect transistors. Mater. Chem. C 2017, 5, 7404. [Google Scholar] [CrossRef]
- Cranston, R.R.; Lessard, B.H. Metal phthalocyanines: Thin-film formation, microstructure, and physical properties. RSC. Adv. 2021, 11, 21716–21737. [Google Scholar] [CrossRef]
- Wang, Y.; Kröger, J.; Berndt, R.; Hofer, W. Structural and Electronic Properties of Ultrathin Tin–Phthalocyanine Films on Ag(111) at the Single-Molecule Level. Chem. Int. Ed. 2009, 48, 1261–1265. [Google Scholar] [CrossRef]
- Ferreira Morgado, L.; Frenchi Trávolo, A.R.; Muehlmann, L.A.; Souza Narcizo, P.; Barbosa Nunes, R.; Gomes Pereira, P.A.; Rapp Py-Daniel, K.; Jiang, C.; Gu, J.; Bentes Azevedo, R.; et al. Photodynamic Therapy treatment of onychomycosis with Aluminum Phthalocyanine Chloride nanoemulsions: A proof of concept clinical trial. J. Photochem. Photobiol. B Biol. 2017, 173, 266–270. [Google Scholar] [CrossRef]
- Darwish, A.A.A.; Alharbi, S.R.; Hawamdeh, M.M.; Alsharari, A.M.; Qashou, S.I. Dielectric Properties and AC Conductivity of Organic Films of Copper(II) 2,9,16,23-Tetra-tert-butyl-29H,31H-phthalocyanine. J. Electron. Mater. 2020, 49, 2020. [Google Scholar] [CrossRef]
- Touka, N.; Benelmadjat, H.; Boudine, B.; Halimi, O.; Sebais, M. Copper phthalocyanine nanocrystals embedded into polymer host: Preparation and structural characterization. J. Assoc. Arab Univ. Basic Appl. Sci. 2013, 13, 52–56. [Google Scholar] [CrossRef]
- Ahmad, Z.; Sayyad, M.H.; Karimov, K.S. CuPc based organic-inorganic hetero-junction with Au electrodes. J. Semicond. 2010, 31, 074002. [Google Scholar] [CrossRef]
- Islam, Z.U.; Tahir, M.; Syed, W.A.; Aziz, F.; Whab, F.; Said, S.M.; Sarker, M.R.; Ali, S.H.M.; Sabri Mohb, M.F. Fabrication and Photovoltaic Properties of Organic Solar Cell Based on Zinc Phthalocyanine. Energies 2020, 13, 962. [Google Scholar] [CrossRef] [Green Version]
- García-Iglesias, Z.; Cid, J.-J.; Yum, J.-H.; Fornel, A.; Vázquez, P.; Nazèeruddin, M.K.; Palomares, E.; Grätzel, M.; Torres, T. Increasing the efficiency of zinc-phthalocyanine based solar cells through modification of the anchoring ligand. Energy Environ. Sci. 2011, 4, 189. [Google Scholar] [CrossRef]
- Song, C.; Li, Y.; Gao, C.; Zhang, H.; Chuai, Y.; Song, D. An OTFT based on titanium phthalocyanine dichloride: A new p-type organic semiconductor. Mater. Lett. 2020, 270, 127666. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Niu, L. Titanyl phthalocyanine and its soluble derivatives: Highly efficient photosensitizers for singlet oxygen production. J. Photochem. Photobiol. A Chem 2010, 209, 232–237. [Google Scholar] [CrossRef]
- Del Caño, T.; Parra, V.; Rodríguez-Méndez, M.L.; Aroca, R.F.; De Saja, J.A. Characterization of evaporated trivalent and tetravalent phthalocyanines thin films: Different degree of organization. Appl. Surf. Sci. 2005, 246, 327–333. [Google Scholar] [CrossRef]
- Al-Ghamdi, S.A.; Hamdalla, T.A.; Darwish, A.A.A.; Alzahrani, A.O.M.; El-Zaidia, E.F.M.; Alamrani, N.A.; Elblbesy, M.A.; Yahia, I.S. Preparation, Raman Spectroscopy, Surface Morphology and Optical Properties of TiPcCl2 Nanostructured Films: Thickness Effect. Opt. Quantum Electron. 2021, 53, 514. [Google Scholar] [CrossRef]
- Ouyang, J.; Chu, C.-W.; Chen, F.-C.; Xu, Q.; Yang, Y. 2005 High-Conductivity Poly(3,4-Ethylenedioxythiophene):Poly(styrene sulfonate) Film and Its Application in Polymer Optoelectronic Devices. Adv. Funct. Mater. 2005, 15, 203–208. [Google Scholar] [CrossRef]
- El-Nahass, M.M.; Abd-El-Rahman, K.F.; Al-Ghamdi, A.A.; Asiri, A.M. Optical properties of thermally evaporated tin-phthalocyanine dichloride thin films, SnPcCl2. Phys. B Condens. Matter. 2014, 344, 398–406. [Google Scholar] [CrossRef]
- El-Nahass, M.M.; El-Goharyb, Z.; Soliman, H.S. Structural and optical studies of thermally evaporated CoPc thin films. Opt. Laser Technol. 2003, 35, 523–531. [Google Scholar] [CrossRef]
- Achar, B.N.; Lokesh, K.S.; Solid, J. Studies on polymorphic modifications of copper phthalocyanine. State. Chem. 2004, 177, 1987–1993. [Google Scholar] [CrossRef]
- Hassan, A.K.; Gould, R.D. Structural Studies of Thermally Evaporated Thin Films of Copper Phthalocyanine. Phys. Status Solidi 1992, 132, 91–101. [Google Scholar] [CrossRef]
- Szybowicz, M.; Bala, W.; Fabisiak, K.; Paprocki, K.; Drozdowski, M. The molecular structure ordering and orientation of the metallophthalocyanine CoPc, ZnPc, CuPc, and MgPc thin layers deposites on silicon substrate, as studied by micro-Raman spectroscopy. Mater. J. Sci. 2011, 46, 6589–6595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinet, S.; Clarisse, C.; Gauneau, M.; Salvi, M.; Delamar, M.; Leclerc, M.; Lacharme, J.P. Spectroscopic and structural studies of scandium diphthalocyanine films. Thin Solid Films 1989, 182, 307–317. [Google Scholar] [CrossRef]
- Priya Madhuri, K.; John, N.S.; Angappane, S.; Santra, P.K.; Bertram, F. Influence of iodine doping on the structure, morphology, and physical properties of manganese phthalocyanine thin films. J. Phys. Chem. C 2018, 122, 28075–28084. [Google Scholar] [CrossRef]
- Gaffo, L.; Cordeiro, M.R.; Freitas, A.R.; Moreira, W.C.; Girotto, E.M.; Zucolotto, V. The effects of temperature on the molecular orientation of zinc phthalocyanine films. J. Mater. Sci. 2010, 45, 1366–1370. [Google Scholar] [CrossRef]
- Zou, T.; Wang, X.; Ju, H.; Zhao, L.; Guo, T.; Wu, W.; Wang, H. Controllable Molecular Packing Motif and Overlap Type in Organic Nanomaterials for Advanced Optical Properties. Crystals 2018, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Karan, S.; Mallik, B. Effects of annealing on the morphology and optical property of copper (II) phthalocyanine nanostructured thin films. Solid State Commun. 2007, 143, 289–294. [Google Scholar] [CrossRef]
- Reichelt, K. Nucleation and growth of thin films. Vacuumm 1988, 38, 1083–1099. [Google Scholar] [CrossRef]
- Venables, J.A.; Spiller, G.D.T.; Hanbucken, M. Nucleation and growth of thin films. Rep. Prog. Phys. 1984, 47, 399–459. [Google Scholar] [CrossRef]
- Virkar, A.A.; Mannsfeld, S.; Bao, Z.; Stingelin, N. Organic Semiconductor Growth and Morphology Considerations for Organic Thin-Film Transistors. Adv. Mater. 2010, 22, 3857–3875. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiao, Y.; Wang, S.; Yang, Y.; Ma, Y.; Li, X. Polymorph-induced photosensitivity change in titanylphthalocyanine revealed by the charge transfer integral. Nanophotonics 2019, 8, 787–797. [Google Scholar] [CrossRef]
- Hamui, L.; Sánchez-Vergara, M.E.; Calatayud-Valdespino, B.; Salcedo, R. Iodine Doping Implementation Effect on the Electrical Response in Metallophthalocyanines (M = Cu, Co, Zn), for Electronic and Photovoltaic Applications. Crystals 2022, 12, 1037. [Google Scholar] [CrossRef]
- Chen, W.; Cao, W.; Hameed, T.A.; Marsillac, S.; Elsayed-Ali, H.E. Properties of Cu(In,Ga,Al)Se2 thin films fabricated by pulsed laser deposition. J Mater. Sci. Mater. Electron. 2015, 26, 1743–1747. [Google Scholar] [CrossRef]
- Ghanem, M.G.; Badr, Y.; Hameed, T.A.; Marssi, M.E.; Lahmar, A.; Wahab, H.A.; Battisha, I.K. Synthesis and characterization of undoped and Er-doped ZnO nano-structure thin films deposited by sol-gel spin coating technique. Mater. Res. Express 2019, 6, 085916. [Google Scholar] [CrossRef]
- Ough, E.A.; Stillman, M.J.; Creber, K.A.M. Absorption and magnetic circular dichroism spectra of nitrogen homologues of magnesium and zinc phthalocyanine. Can. J. Chem. 1993, 71, 1898–1909. [Google Scholar] [CrossRef]
- Karan, S.; Basak, D.; Mallik, B. Copper phthalocyanine nanoparticles and nanoflowers. Chem. Phys. Lett. 2007, 434, 265–270. [Google Scholar] [CrossRef]
- El-Nahass, M.M.; Farag, A.M.; Abd-El-Rahman, E.F.; Darwish, A.A.A. Dispersion Studies and Electronic Transitions in Nickel Phthalocyanine Thin Film. Opt. Laser Technol. 2005, 37, 513–523. [Google Scholar] [CrossRef]
- Roy, D.; Das, N.M.; Shakti, N.; Gupta, P.S. Comparative study of optical, structural and electrical properties of zinc phthalocyanine Langmuir–Blodgett thin film on annealing. RSC Adv. 2014, 4, 42514–42522. [Google Scholar] [CrossRef]
- El-Nahass, M.M.; Abd-El-Rahman, K.F.; Darwish, A.A.A. Fourier-Transform Infrared and UV-vis Spectroscopes of Nickel Phthalocyanine Thin Films. Mater. Chem. Phys. 2005, 92, 185–189. [Google Scholar] [CrossRef]
- Farag, A.A.M. Optical absorption studies of copper phthalocyanine thin films. Opt. Laser Technol. 2007, 39, 728–732. [Google Scholar] [CrossRef]
- Sridharan, M.; Narayandass, S.K.; Mangalaraj, D.; Lee, H.C. Optical constants of vacuum-evaporated Cd0.96Zn0.04Te thin films measured by spectroscopic ellipsometry. J. Mater. Sci. Mater. Electron. 2002, 13, 471–476. [Google Scholar] [CrossRef]
- Fox, M. Optical Properties of Solids, 2nd ed.; Department of Physics and Astronomy, University of Sheffield, Oxford University Press: Oxford, UK, 2010; ISBN 9780199573370. [Google Scholar]
- Pankove, J.I. Optical Processes in Semiconductors; University of Colorado: Boulder, CO, USA; Dover Publications, Inc.: Mineola, NY, USA, 1975; pp. 171–178. [Google Scholar]
- Dongol, M.; El-Nahass, M.M.; El-Denglawey, A.; Elhady, A.F.; Abuelwafa, A.A. Optical Properties of Nano 5,10,15,20-Tetraphenyl-21H,23H-Prophyrin Nickel (II) Thin Films. Curr. Appl. Phys. 2012, 12, 1178–1184. [Google Scholar] [CrossRef]
- Alosabi, A.Q.; Al-Muntaser, A.A.; El-Nahass, M.M.; Oraby, A.H. Structural, optical and DFT studies of disodium phthalocyanine thin films for optoelectronic devices applications. Opt. Laser Technol. 2022, 155, 108372. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Urbach, F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 1953, 92, 1324. [Google Scholar] [CrossRef]
- Laidani, N.; Bartali, R.; Gottardi, G.; Anderle, M.; Cheyssac, P. Optical absorption parameters of amorphous carbon films from forouhi-bloomer and tauc-lorentz models: A comparative study. J. Phys. Condens. Matter 2008, 20, 015216. [Google Scholar] [CrossRef] [Green Version]
- Mok, T.M.; O’Leary, S.K. The dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the film thickness: Al Experimental limitations and the impact of curvature in the Tauc and Cody plots. J. Appl. Phys. 2007, 102, 113525. [Google Scholar] [CrossRef]
- Pavaskar, P.; Chodankar, S.; Salker, A. Photoluminescence and photocatalytic degradation studies on some metallophthalocyanines. Eur. J. Chem. 2011, 2, 416–419. [Google Scholar] [CrossRef] [Green Version]
- Hamui, L.; Sánchez-Vergara, M.E.; Sánchez-Ruiz, R.; Ruanova-Ferreiro, D.; Ballinas Indili, R.; Álvarez-Toledano, C. New Development of Membrane Base Optoelectronic Devices. Polymers 2018, 10, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhowal, A.C.; Talukdar, H.; Kundu, S. Preparation, characterization and electrical behaviors of PEDOT:PSS-Au/Ag nanocomposite thin films: An ecofriendly approach. Polym. Bull. 2019, 76, 5233–5251. [Google Scholar] [CrossRef]
- Kakavelakis, G.; Alexaki, K.; Stratakis, E.; Kymakis, E. Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer. RSC Adv. 2017, 7, 12998–13002. [Google Scholar] [CrossRef] [Green Version]
- Laurs, H.; Heiland, G. Electrical and optical properties of phthalocyanine films. Thin Solid Films 1987, 149, 129–142. [Google Scholar] [CrossRef]
- Gopinathan, T.G.; Menon, C.S. Studies on the electrical and optical properties of magnesium phthalocyanine thin films. E-J. Chem. 2004, 1, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Varghese, A.; Menon, C. Electrical conductivity studies of mixed phthalocyanine thin films. Open Phys. 2005, 3, 8–14. [Google Scholar] [CrossRef]
Assignment | TiOPc KBr Pellet (cm−1) | TiOPc As-Deposited Films (cm−1) | TiCl2Pc KBr Pellet (cm−1) | TiCl2Pc As-Deposited Films (cm−1) |
---|---|---|---|---|
C=C stretching | 1611 | 1610 | 1611 | 1609 |
C=C benzene stretching | 1476 | 1471 | 1472 | 1479 |
In-plane pyrrole stretching | 1584, 1338 | 1591, 1331 | 1585,1334 | 1591, 1335 |
C-H bending | 1293, 1166, 1118 | 1284, 1162, 1117 | 1293, 1160, 1119 | 1286, 1169, 1119 |
In plane C-H deformation | 751 | 754 | 753 | 754 |
Film | RMS (nm) | Ra (nm) |
---|---|---|
TiOPc | 18.33 | 13.32 |
TiCl2Pc | 17.67 | 14.61 |
TiCl2Pc | TiOPc Annealed | TiCl2Pc Annealed | PEDOT:PSS/TiOPc | PEDOT:PSS/TiCl2Pc | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2θ (Degree) | FWHM (Degree) | D (nm) | 2θ (Degree) | FWHM (Degree) | D (nm) | 2θ (Degree) | FWHM (Degree) | D (nm) | 2θ (Degree) | FWHM (Degree) | D (nm) | 2θ (Degree) | FWHM (Degree) | D (nm) |
- | - | - | 7.680 | 0.407 | 0.340 | 7.611 | 0.611 | 0.226 | 7.630 | 0.164 | 0.843 | 9.620 | 0.856 | 0.162 |
- | - | - | - | - | - | - | - | - | 9.360 | 0.553 | 0.251 | - | - | - |
11.020 | 0.393 | 0.355 | - | - | - | - | - | - | - | - | - | 10.619 | 0.585 | 0.238 |
- | - | - | 12.781 | 0.575 | 0.244 | 12.792 | 0.398 | 0.353 | 13.582 | 0.124 | 1.137 | - | - | - |
17.977 | 0.324 | 0.445 | - | - | - | - | - | - | - | - | - | - | - | - |
19.280 | 0.628 | 0.231 | - | - | - | - | - | - | - | - | - | - | - | - |
24.740 | 0.462 | 0.327 | 25.560 | 0.377 | 0.403 | 25.740 | 0.605 | 0.252 | 26.315 | 0.225 | 0.680 | 26.635 | 0.523 | 0.293 |
26.783 | 0.404 | 0.380 | - | - | - | - | - | - | - | - | - | - | - | - |
28.688 | 0.337 | 0.464 | 28.573 | 0.378 | 0.413 | 28.669 | 0.638 | 0.245 | 27.334 | 0.217 | 0.711 | - | - | - |
29.321 | 0.297 | 0.529 | 31.081 | 0.380 | 0.421 | - | - | - | 33.014 | 0.144 | 1.135 | - | - | - |
34.280 | 0.366 | 0.453 | - | - | - | - | - | - | - | - | - | 33.265 | 0.154 | 1.064 |
- | - | - | 47.982 | 0.352 | 0.582 | 46.100 | 0.362 | 0.546 | - | - | - | |||
- | - | - | 49.660 | 0.456 | 0.464 | - | - | - | - | - | - | - | - | - |
- | - | - | 50.980 | 0.287 | 0.759 | - | - | - | - | - | - | - | - | - |
- | - | - | - | - | - | 60.674 | 0.458 | 0.611 | 61.740 | 0.163 | 1.776 | 61.814 | 0.214 | 1.356 |
- | - | - | 65.791 | 0.324 | 1.032 | - | - | - | 65.964 | 0.144 | 2.337 | - | - | - |
- | - | - | - | - | - | - | - | - | 66.526 | 0.133 | 2.587 | - | - | - |
Thin Film | Onset Gap (eV) | Optical Gap (eV) |
---|---|---|
TiOPc | 1.43 | 2.85 |
TiOPc heat treated | 1.32 | 2.85 |
TiOPc + PEDOT:PSS | 1.5 | 2.91 |
TiOPc + PEDOT:PSS heat treated | 1.27 | 2.85 |
TiCl2Pc | 1.48 | 2.83 |
TiCl2Pc heat treated | 1.34 | 2.85 |
TiCl2Pc + PEDOT:PSS | 1.52 | 2.94 |
TiCl2Pc + PEDOT:PSS heat treated | 1.29 | 2.79 |
TiOPc | TiCl2Pc | PEDOT:PSS/TiOPc | PEDOT:PSS/TiCl2Pc | |
---|---|---|---|---|
Psi (°) | 25.00 | 28.80 | 22.70 | 6.50 |
Delta (°) | 140.40 | 137.00 | 134.80 | 160.00 |
Refractive Index (n) | 1.137 | 1.182 | 1.148 | 1.436 |
Photocurrent density (@ 0V, A/cm2) | 0.03 | 6.56 | 0.84 | 1.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez Vergara, M.E.; Villanueva Heredia, L.F.; Hamui, L. Influence of the Coordinated Ligand on the Optical and Electrical Properties in Titanium Phthalocyanine-Based Active Films for Photovoltaics. Materials 2023, 16, 551. https://doi.org/10.3390/ma16020551
Sánchez Vergara ME, Villanueva Heredia LF, Hamui L. Influence of the Coordinated Ligand on the Optical and Electrical Properties in Titanium Phthalocyanine-Based Active Films for Photovoltaics. Materials. 2023; 16(2):551. https://doi.org/10.3390/ma16020551
Chicago/Turabian StyleSánchez Vergara, María Elena, Luisa Fernanda Villanueva Heredia, and Leon Hamui. 2023. "Influence of the Coordinated Ligand on the Optical and Electrical Properties in Titanium Phthalocyanine-Based Active Films for Photovoltaics" Materials 16, no. 2: 551. https://doi.org/10.3390/ma16020551
APA StyleSánchez Vergara, M. E., Villanueva Heredia, L. F., & Hamui, L. (2023). Influence of the Coordinated Ligand on the Optical and Electrical Properties in Titanium Phthalocyanine-Based Active Films for Photovoltaics. Materials, 16(2), 551. https://doi.org/10.3390/ma16020551