Application of Iron Nanoparticle-Based Materials in the Food Industry
Abstract
:1. Introduction
2. Methods for Obtaining Iron Nanoparticles
2.1. Chemical Synthesis
2.2. Green Synthesis
2.2.1. Synthesis by Microorganisms
2.2.2. Synthesis Using Plant Parts
2.2.3. Synthesis Using Green Reagents
3. Application of Iron Nanoparticle-Based Materials in Food Production
3.1. Application in the Production of Food Packaging
3.2. Edible Coatings on Food
3.3. Immobilization of Enzymes
3.4. Artificial Enzymes
3.5. Food Analysis
3.6. Protein Purification
3.7. Iron Oxides as Ingredients in Foods and Dietary Supplements
3.8. Colorants
3.9. Mycotoxin Removal
3.10. Anti-Allergic Effect
3.11. Control of the Process Flow
3.12. Preservation of Food in Supercooled State
4. Effects of Iron Nanoparticles on Living Organisms
4.1. Antimicrobial Activity
4.2. Antiviral Effect of IONPs
4.3. Antifungal Activity
4.4. Effects of Iron Nanoparticles on the Human Body
- Direct generation of ROS on the surfaces of nanoparticles;
- Production of ROS via the leaching of iron particles;
- Altered function of mitochondria and other organelles;
- Induction of cellular signaling pathways [139].
4.5. In Vitro Evaluation
4.6. In Vivo Evaluation
4.7. Biocompatibility
4.8. Effects on the Human Body
5. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Magro, M.; Vianello, F. Bare Iron Oxide Nanoparticles: Surface Tunability for Biomedical, Sensing and Environmental Applications. Nanomaterials 2019, 9, 1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamran, U.; Bhatti, H.N.; Iqbal, M.; Nazir, A. Green Synthesis of Metal Nanoparticles and their Applications in Different Fields: A Review. Z. Fur Phys. Chem. 2019, 233, 1325–1349. [Google Scholar] [CrossRef]
- Can, M.M.; Coşkun, M.; Fırat, T. A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. J. Alloy. Compd. 2012, 542, 241–247. [Google Scholar] [CrossRef]
- Nieuwoudt, M.K.; Comins, J.D.; Cukrowski, I. The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman microspectroscopy and electrochemical polarization. Part II: In situ Raman spectra of the passive film surface during growth by electrochemical polarization. J. Raman Spectrosc. 2011, 42, 1353–1365. [Google Scholar] [CrossRef]
- Tran, P.; Tran, T.T.-D.; Van Vo, T.; Lee, B.-J. Promising iron oxide-based magnetic nanoparticles in biomedical engineering. Arch. Pharmacal Res. 2012, 35, 2045–2061. [Google Scholar] [CrossRef] [PubMed]
- Colino, C.I.; Millán, C.G.; Lanao, J.M. Nanoparticles for Signaling in Biodiagnosis and Treatment of Infectious Diseases. Int. J. Mol. Sci. 2018, 19, 1627. [Google Scholar] [CrossRef] [Green Version]
- Senthil, M.; Ramesh, C. Biogenic Synthesis of Fe3O4 Nanoparticles Using Tridax Procumbens Leaf Extract and Its Antibacterial Activity on Pseudomonas Aeruginosa. Dig. J. Nanomater. Biostruct. 2012, 7, 1655–1661. [Google Scholar]
- Góral, D.; Góral-Kowalczyk, M. Application of Metal Nanoparticles for Production of Self-Sterilizing Coatings. Coatings 2022, 12, 480. [Google Scholar] [CrossRef]
- Huang, K.-C.; Ehrman, S.H. Synthesis of Iron Nanoparticles via Chemical Reduction with Palladium Ion Seeds. Langmuir 2007, 23, 1419–1426. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.Y.; Lee, W.I.; Nelson, K.L.; Yoon, J.; Sedlak, D.L. Bactericidal Effect of Zero-Valent Iron Nanoparticles on Escherichia coli. Environ. Sci. Technol. 2008, 42, 4927–4933. [Google Scholar] [CrossRef] [Green Version]
- Leszczyński, B. Nanocząstki Tlenków Żelaza w Hipertermii Magnetycznej; Uniwersytet Adama Mickiewicza w Poznaniu: Poznań, Poland, 2016. [Google Scholar]
- Kandpal, N.D.; Sah, N.; Loshali, R.; Joshi, R.; Prasad, J. Co-Precipitation Method of Synthesis and Characterization of Iron Oxide Nanoparticles. J. Sci. Ind. Res. 2014, 73, 87–90. [Google Scholar]
- Petcharoen, K.; Sirivat, A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 2012, 177, 421–427. [Google Scholar] [CrossRef]
- Hui, B.H.; Salimi, M.N. Production of Iron Oxide Nanoparticles by Co-Precipitation method with Optimization Studies of Processing Temperature, pH and Stirring Rate. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 743, p. 012036. [Google Scholar]
- Yoon, S. Preparation and Physical Characterizations of Superparamagnetic Maghemite Nanoparticles. J. Magn. 2014, 19, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Winiarczyk, K.; Gac, W.; Góral-Kowalczyk, M.; Surowiec, Z. Magnetic properties of iron oxide nanoparticles with a DMSA-modified surface. Hyperfine Interact. 2021, 242, 5–10. [Google Scholar] [CrossRef]
- Chawla, P.; Najda, A.; Bains, A.; Nurzyńska-Wierdak, R.; Kaushik, R.; Tosif, M. Potential of Gum Arabic Functionalized Iron Hydroxide Nanoparticles Embedded Cellulose Paper for Packaging of Paneer. Nanomaterials 2021, 11, 1308. [Google Scholar] [CrossRef]
- Nayeem, J.; Al-Bari, A.A.; Mahiuddin; Rahman, A.; Mefford, O.T.; Ahmad, H.; Rahman, M. Silica coating of iron oxide magnetic nanoparticles by reverse microemulsion method and their functionalization with cationic polymer P(NIPAm-co-AMPTMA) for antibacterial vancomycin immobilization. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125857. [Google Scholar] [CrossRef]
- Chin, A.B.; Yaacob, I.I. Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J. Mater. Process. Technol. 2007, 191, 235–237. [Google Scholar] [CrossRef]
- Kekalo, K.; Koo, K.; Zeitchick, E.; Baker, I. Microemulsion Synthesis of Iron Core/Iron Oxide Shell Magnetic Nanoparticles and Their Physicochemical Properties. Mater. Res. Soc. Symp. Proc. 2012, 1416, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Amara, D.; Felner, I.; Nowik, I.; Margel, S. Synthesis and characterization of Fe and Fe3O4 nanoparticles by thermal decomposition of triiron dodecacarbonyl. Colloids Surf. A Physicochem. Eng. Asp. 2009, 339, 106–110. [Google Scholar] [CrossRef]
- Hufschmid, R.; Arami, H.; Ferguson, R.M.; Gonzales, M.; Teeman, E.; Brush, L.N.; Browning, N.D.; Krishnan, K.M. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 2015, 7, 11142–11154. [Google Scholar] [CrossRef] [Green Version]
- Maity, D.; Kale, S.; Kaul-Ghanekar, R.; Xue, J.-M.; Ding, J. Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri(ethylene glycol). J. Magn. Magn. Mater. 2009, 321, 3093–3098. [Google Scholar] [CrossRef]
- Cotin, G.; Kiefer, C.; Perton, F.; Ihiawakrim, D.; Blanco-Andujar, C.; Moldovan, S.; Lefevre, C.; Ersen, O.; Pichon, B.; Mertz, D.; et al. Unravelling the Thermal Decomposition Parameters for The Synthesis of Anisotropic Iron Oxide Nanoparticles. Nanomaterials 2018, 8, 881. [Google Scholar] [CrossRef] [PubMed]
- Takami, S.; Sato, T.; Mousavand, T.; Ohara, S.; Umetsu, M.; Adschiri, T. Hydrothermal synthesis of surface-modified iron oxide nanoparticles. Mater. Lett. 2007, 61, 4769–4772. [Google Scholar] [CrossRef]
- Xu, C.; Teja, A.S. Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles. J. Supercrit. Fluids 2008, 44, 85–91. [Google Scholar] [CrossRef]
- Gurushankar, K.; Chinnaiah, K.; Kannan, K.; Gohulkumar, M.; Periyasamy, P. Synthesis and Characterization of FeO Nanoparticles by Hydrothermal Method. Rasayan J. Chem. 2021, 14, 1985–1989. [Google Scholar] [CrossRef]
- Hassanjani-Roshan, A.; Vaezi, M.R.; Shokuhfar, A.; Rajabali, Z. Synthesis of iron oxide nanoparticles via sonochemical method and their characterization. Particuology 2011, 9, 95–99. [Google Scholar] [CrossRef]
- Marchegiani, G.; Imperatori, P.; Mari, A.; Pilloni, L.; Chiolerio, A.; Allia, P.; Tiberto, P.; Suber, L. Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles. Ultrason. Sonochem. 2012, 19, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.; Wu, S. Synthesis, characterization and magnetic properties of γ-Fe2O3 nanoparticles via a non-aqueous medium. J. Solid State Chem. 2004, 177, 1213–1218. [Google Scholar] [CrossRef]
- Takai, Z.; Mustafa, M.K.; Asman, S.; Takai, Z.I.; Mustafa, M.K.; Sekak, K.A. Preparation and Characterization of Magnetite (Fe3O4) Nanoparticles by Sol-Gel Method. Int. J. Nanoelectron. Mater. 2019, 12, 37–46. [Google Scholar]
- Paulson, E.; Jothibas, M. Significance of thermal interfacing in hematite (α-Fe2O3) nanoparticles synthesized by sol-gel method and its characteristics properties. Surf. Interfaces 2021, 26, 101432. [Google Scholar] [CrossRef]
- Dave, S.R.; Gao, X. Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: A versatile and evolving technology. WIREs Nanomed. Nanobiotechnol. 2009, 1, 583–609. [Google Scholar] [CrossRef] [PubMed]
- Keenan, C.R.; Sedlak, D.L. Factors Affecting the Yield of Oxidants from the Reaction of Nanoparticulate Zero-Valent Iron and Oxygen. Environ. Sci. Technol. 2008, 42, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Farrell, D.; Majetich, S.A.; Wilcoxon, J.P. Preparation and Characterization of Monodisperse Fe Nanoparticles. J. Phys. Chem. B 2003, 107, 11022–11030. [Google Scholar] [CrossRef]
- Vilardi, G.; Verdone, N.; Bubbico, R. Combined production of metallic-iron nanoparticles: Exergy and energy analysis of two alternative processes using Hydrazine and NaBH4 as reducing agents. J. Taiwan Inst. Chem. Eng. 2020, 118, 97–111. [Google Scholar] [CrossRef]
- Bharde, A.A.; Parikh, R.Y.; Baidakova, M.; Jouen, S.; Hannoyer, B.; Enoki, T.; Prasad, B.L.V.; Shouche, Y.S.; Ogale, S.; Sastry, M. Bacteria-Mediated Precursor-Dependent Biosynthesis of Superparamagnetic Iron Oxide and Iron Sulfide Nanoparticles. Langmuir 2008, 24, 5787–5794. [Google Scholar] [CrossRef]
- Bharde, A.; Wani, A.; Shouche, Y.; Joy, P.A.; Prasad, B.L.V.; Sastry, M. Bacterial Aerobic Synthesis of Nanocrystalline Magnetite. J. Am. Chem. Soc. 2005, 127, 9326–9327. [Google Scholar] [CrossRef]
- Moon, J.-W.; Rawn, C.J.; Rondinone, A.; Love, L.; Roh, Y.; Everett, S.; Lauf, R.J.; Phelps, T.J. Large-scale production of magnetic nanoparticles using bacterial fermentation. J. Ind. Microbiol. Biotechnol. 2010, 37, 1023–1031. [Google Scholar] [CrossRef]
- Sundaram, P.A.; Augustine, R.; Kannan, M. Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol. Bioprocess Eng. 2012, 17, 835–840. [Google Scholar] [CrossRef]
- Elcey, C.D.; Kuruvilla, A.T.; Thomas, D. Synthesis of Magnetite Nanoparticles from Optimized Iron Reducing Bacteria Isolated from Iron Ore Mining Sites. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 408–417. [Google Scholar]
- Kaul, R.K.; Kumar, P.; Burman, U.; Joshi, P.; Agrawal, A.; Raliya, R.; Tarafdar, J.C. Magnesium and iron nanoparticles production using microorganisms and various salts. Mater. Sci. 2012, 30, 254–258. [Google Scholar] [CrossRef]
- Mohamed, Y.M.; Azzam, A.M.; Amin, B.H.; Safwat, N.A. Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Afr. J. Biotechnol. 2015, 14, 1234–1241. [Google Scholar] [CrossRef] [Green Version]
- Mahanty, S.; Bakshi, M.; Ghosh, S.; Chatterjee, S.; Bhattacharyya, S.; Das, P.; Das, S.; Chaudhuri, P. Green Synthesis of Iron Oxide Nanoparticles Mediated by Filamentous Fungi Isolated from Sundarban Mangrove Ecosystem, India. Bionanoscience 2019, 9, 637–651. [Google Scholar] [CrossRef]
- Mahdavi, M.; Namvar, F.; Bin Ahmad, M.; Mohamad, R. Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract. Molecules 2013, 18, 5954–5964. [Google Scholar] [CrossRef] [PubMed]
- Subramaniyam, V.; Subashchandrabose, S.R.; Thavamani, P.; Megharaj, M.; Chen, Z.; Naidu, R. Chlorococcum sp. MM11—A novel phyco-nanofactory for the synthesis of iron nanoparticles. J. Appl. Phycol. 2015, 27, 1861–1869. [Google Scholar] [CrossRef]
- Machado, S.; Pinto, S.; Grosso, J.; Nouws, H.; Albergaria, J.; Delerue-Matos, C. Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci. Total. Environ. 2013, 445–446, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sathya, K.; Saravanathamizhan, R.; Baskar, G. Ultrasound assisted phytosynthesis of iron oxide nanoparticle. Ultrason. Sonochem. 2017, 39, 446–451. [Google Scholar] [CrossRef]
- Weng, X.; Guo, M.; Luo, F.; Chen, Z. One-step green synthesis of bimetallic Fe/Ni nanoparticles by eucalyptus leaf extract: Biomolecules identification, characterization and catalytic activity. Chem. Eng. J. 2017, 308, 904–911. [Google Scholar] [CrossRef]
- Katata-Seru, L.; Moremedi, T.; Aremu, O.S.; Bahadur, I. Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: Removal of nitrate from water and antibacterial activity against Escherichia coli. J. Mol. Liq. 2018, 256, 296–304. [Google Scholar] [CrossRef]
- Farshchi, H.K.; Azizi, M.; Jaafari, M.R.; Nemati, S.H.; Fotovat, A. Green synthesis of iron nanoparticles by Rosemary extract and cytotoxicity effect evaluation on cancer cell lines. Biocatal. Agric. Biotechnol. 2018, 16, 54–62. [Google Scholar] [CrossRef]
- Beheshtkhoo, N.; Kouhbanani, M.A.J.; Savardashtaki, A.; Amani, A.M.; Taghizadeh, S. Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Appl. Phys. A 2018, 124, 363. [Google Scholar] [CrossRef]
- Noreen, S.; Ismail, S.; Ibrahim, S.M.; Kusuma, H.S.; Nazir, A.; Yaseen, M.; Khan, M.I.; Iqbal, M. ZnO, CuO and Fe2O3 green synthesis for the adsorptive removal of direct golden yellow dye adsorption: Kinetics, equilibrium and thermodynamics studies. Z. Für Phys. Chem. 2021, 235, 1055–1075. [Google Scholar] [CrossRef]
- Khaghani, S.; Ghanbari, D.; Khaghani, S. Green Synthesis of Iron Oxide-Palladium Nanocomposites by Pepper extract and Its Application in Removing of Colored Pollutants from Water. Z. Fur Phys. Chem. 2017, 7, 175–182. [Google Scholar] [CrossRef]
- Jegadeesan, G.B.; Srimathi, K.; Srinivas, N.S.S.; Manishkanna, S.; Vignesh, D. Green synthesis of iron oxide nanoparticles using Terminalia bellirica and Moringa oleifera fruit and leaf extracts: Antioxidant, antibacterial and thermoacoustic properties. Biocatal. Agric. Biotechnol. 2019, 21, 101354. [Google Scholar] [CrossRef]
- Jain, R.; Mendiratta, S.; Kumar, L.; Srivastava, A. Green synthesis of iron nanoparticles using Artocarpus heterophyllus peel extract and their application as a heterogeneous Fenton-like catalyst for the degradation of Fuchsin Basic dye. Curr. Res. Green Sustain. Chem. 2021, 4, 100086. [Google Scholar] [CrossRef]
- Yusefi, M.; Shameli, K.; Yee, O.S.; Teow, S.-Y.; Hedayatnasab, Z.; Jahangirian, H.; Webster, T.J.; Kuča, K. Green Synthesis of Fe3O4 Nanoparticles Stabilized by a Garcinia mangostana Fruit Peel Extract for Hyperthermia and Anticancer Activities. Int. J. Nanomed. 2021, 16, 2515–2532. [Google Scholar] [CrossRef]
- Khan, Z.; Al-Thabaiti, S.A. Green synthesis of zero-valent Fe-nanoparticles: Catalytic degradation of rhodamine B, interactions with bovine serum albumin and their enhanced antimicrobial activities. J. Photochem. Photobiol. B Biol. 2018, 180, 259–267. [Google Scholar] [CrossRef]
- Bibi, I.; Nazar, N.; Ata, S.; Sultan, M.; Ali, A.; Abbas, A.; Jilani, K.; Kamal, S.; Sarim, F.M.; Khan, M.I.; et al. Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. J. Mater. Res. Technol. 2019, 8, 6115–6124. [Google Scholar] [CrossRef]
- Ghafarzadegan, R.; Yaghoobi, M.; Momtaz, S.; Ashoory, N.; Yekta, M.G.; Hajiaghaee, R. Process optimization for green synthesis of iron nanoparticles by extract of fenugreek (Trigonella foenum-graecum L.) seeds. J. Med. Plants 2022, 21, 22–32. [Google Scholar] [CrossRef]
- Venkateswarlu, S.; Kumar, B.N.; Prasad, C.; Venkateswarlu, P.; Jyothi, N. Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract. Phys. B Condens. Matter 2014, 449, 67–71. [Google Scholar] [CrossRef]
- Nnadozie, E.C.; Ajibade, P.A. Green synthesis and characterization of magnetite (Fe3O4) nanoparticles using Chromolaena odorata root extract for smart nanocomposite. Mater. Lett. 2020, 263, 127145. [Google Scholar] [CrossRef]
- Turakhia, B.; Chikkala, S.; Shah, S. Novelty of Bioengineered Iron Nanoparticles in Nanocoated Surgical Cotton: A Green Chemistry. Adv. Pharmacol. Sci. 2019, 2019, 9825969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njagi, E.C.; Huang, H.; Stafford, L.; Genuino, H.; Galindo, H.M.; Collins, J.B.; Hoag, G.E.; Suib, S.L. Biosynthesis of Iron and Silver Nanoparticles at Room Temperature Using Aqueous Sorghum Bran Extracts. Langmuir 2011, 27, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Afsheen, S.; Tahir, M.B.; Iqbal, T.; Liaqat, A.; Abrar, M. Green synthesis and characterization of novel iron particles by using different extracts. J. Alloy. Compd. 2018, 732, 935–944. [Google Scholar] [CrossRef]
- Saif, S.; Tahir, A.; Chen, Y. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. Nanomaterials 2016, 6, 209. [Google Scholar] [CrossRef]
- Bolade, O.P.; Williams, A.B.; Benson, N.U. Green synthesis of iron-based nanomaterials for environmental remediation: A review. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100279. [Google Scholar] [CrossRef]
- Sharma, R.K.; Yadav, S.; Gupta, R.; Arora, G. Synthesis of Magnetic Nanoparticles Using Potato Extract for Dye Degradation: A Green Chemistry Experiment. J. Chem. Educ. 2019, 96, 3038–3044. [Google Scholar] [CrossRef]
- He, F.; Zhao, D. Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water. Environ. Sci. Technol. 2005, 39, 3314–3320. [Google Scholar] [CrossRef]
- Shejawal, K.P.; Randive, D.S.; Bhinge, S.D.; Bhutkar, M.A.; Wadkar, G.H.; Jadhav, N.R. Green synthesis of silver and iron nanoparticles of isolated proanthocyanidin: Its characterization, antioxidant, antimicrobial, and cytotoxic activities against COLO320DM and HT29. J. Genet. Eng. Biotechnol. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Maleki, A.; Panahzadeh, M.; Eivazzadeh-Keihan, R. Agar: A natural and environmentally-friendly support composed of copper oxide nanoparticles for the green synthesis of 1,2,3–triazoles. Green Chem. Lett. Rev. 2019, 12, 395–406. [Google Scholar] [CrossRef]
- Sreeja, V.; Jayaprabha, K.N.; Joy, P.A. Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI. Appl. Nanosci. 2015, 5, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Răcuciu, M.; Barbu-Tudoran, L.; Oancea, S.; Drăghici, O.; Morosanu, C.; Grigoras, M.; Brînză, F.; Creangă, D.E. Aspartic Acid Stabilized Iron Oxide Nanoparticles for Biomedical Applications. Nanomaterials 2022, 12, 1151. [Google Scholar] [CrossRef] [PubMed]
- Cahyana, A.H.; Reza, A.I. Synthesis and characterization of Fe3O4 nanoparticles dispersed in paraffin as solvent. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 2049, p. 20010. [Google Scholar]
- Siskova, K.M.; Straska, J.; Krizek, M.; Tucek, J.; Machala, L.; Zboril, R. Formation of Zero-valent Iron Nanoparticles Mediated by Amino Acids. Procedia Environ. Sci. 2013, 18, 809–817. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.; Silva, N.; Trindade, T.; Pereira, S. A Single-Source Route for the Synthesis of Metal Oxide Nanoparticles Using Vegetable Oil Solvents. J. Nanosci. Nanotechnol. 2012, 12, 8963–8968. [Google Scholar] [CrossRef] [PubMed]
- Keshk, S.M.A.S.; El-Zahhar, A.A.; Abu Haija, M.; Bondock, S. Synthesis of a Magnetic Nanoparticles/Dialdehyde Starch-Based Composite Film for Food Packaging. Starch/Staerke 2019, 71, 1800035. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Salehabadi, A.; Nafchi, A.M.; Oladzadabbasabadi, N.; Jafari, S.M. Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties. Trends Food Sci. Technol. 2021, 116, 218–231. [Google Scholar] [CrossRef]
- Mu, H.; Gao, H.; Chen, H.; Tao, F.; Fang, X.; Ge, L. A nanosised oxygen scavenger: Preparation and antioxidant application to roasted sunflower seeds and walnuts. Food Chem. 2013, 136, 245–250. [Google Scholar] [CrossRef]
- Foltynowicz, Z.; Bardenshtein, A.; Sängerlaub, S.; Antvorskov, H.; Kozak, W. Nanoscale, zero valent iron particles for application as oxygen scavenger in food packaging. Food Packag. Shelf Life 2017, 11, 74–83. [Google Scholar] [CrossRef]
- Vilela, C.; Kurek, M.; Hayouka, Z.; Röcker, B.; Yildirim, S.; Antunes, M.D.C.; Nilsen-Nygaard, J.; Pettersen, M.K.; Freire, C.S.R. A concise guide to active agents for active food packaging. Trends Food Sci. Technol. 2018, 80, 212–222. [Google Scholar] [CrossRef]
- Busolo, M.A.; Lagaron, J.M. Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innov. Food Sci. Emerg. Technol. 2012, 16, 211–217. [Google Scholar] [CrossRef]
- EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). Scientific Opinion on the safety assessment of the active substances iron, iron oxides, sodium chloride and calcium hydroxide for use in food contact materials. EFSA J. 2013, 11, 3387. [Google Scholar] [CrossRef] [Green Version]
- Khalaj, M.-J.; Ahmadi, H.; Lesankhosh, R.; Khalaj, G. Study of physical and mechanical properties of polypropylene nanocomposites for food packaging application: Nano-clay modified with iron nanoparticles. Trends Food Sci. Technol. 2016, 51, 41–48. [Google Scholar] [CrossRef]
- Mary, T.R.N.; Jayavel, R. Fabrication of chitosan/Cashew Nut Shell Liquid/plant extracts-based bio-formulated nanosheets with embedded iron oxide nanoparticles as multi-functional barrier resist eco-packaging material. Appl. Nanosci. 2022, 12, 1719–1730. [Google Scholar] [CrossRef]
- Ligaj, M.; Tichoniuk, M.; Cierpiszewski, R.; Foltynowicz, Z. Efficiency of Novel Antimicrobial Coating Based on Iron Nanoparticles for Dairy Products’ Packaging. Coatings 2020, 10, 156. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Niu, C.; Wu, H.; Wei, J.; Zhang, Y.; Yue, T. Transcriptomic Analysis of the Molecular Mechanisms Underlying the Antibacterial Activity of IONPs@pDA-Nisin Composites toward Alicyclobacillus acidoterrestris. ACS Appl. Mater. Interfaces 2019, 11, 21874–21886. [Google Scholar] [CrossRef]
- Zhu, N.; Ji, H.; Yu, P.; Niu, J.; Farooq, M.U.; Akram, M.W.; Udego, I.O.; Li, H.; Niu, X. Surface Modification of Magnetic Iron Oxide Nanoparticles. Nanomaterials 2018, 8, 810. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Ye, F.; Dobretsov, S.; Dutta, J. Chitosan Nanocomposite Coatings for Food, Paints, and Water Treatment Applications. Appl. Sci. 2019, 9, 2409. [Google Scholar] [CrossRef] [Green Version]
- Bahrami, A.; Delshadi, R.; Assadpour, E.; Jafari, S.M.; Williams, L. Antimicrobial-loaded nanocarriers for food packaging applications. Adv. Colloid Interface Sci. 2020, 278, 102140. [Google Scholar] [CrossRef]
- Singh, T.P.; Chatli, M.K.; Sahoo, J. Development of chitosan based edible films: Process optimization using response surface methodology. J. Food Sci. Technol. 2015, 52, 2530–2543. [Google Scholar] [CrossRef]
- Nehra, P.; Chauhan, R.; Garg, N.; Verma, K. Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. Br. J. Biomed. Sci. 2018, 75, 13–18. [Google Scholar] [CrossRef]
- Shrifian-Esfahni, A.; Salehi, M.T.; Nasr-Esfahni, M.; Ekramian, E. Chitosan-Modified Superparamgnetic Iron Oxide Nanoparticles: Design, Fabrication, Characterization and Antibacterial Activity. Chemik 2015, 69, 19–32. [Google Scholar]
- Niemirowicz, K.; Markiewicz, K.; Wilczewska, A.; Car, H. Magnetic nanoparticles as new diagnostic tools in medicine. Adv. Med. Sci. 2012, 57, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Lattuada, M.; Hatton, T.A. Functionalization of Monodisperse Magnetic Nanoparticles. Langmuir 2007, 23, 2158–2168. [Google Scholar] [CrossRef] [PubMed]
- Bashir, N.; Sood, M.; Bandral, J.D. Enzyme immobilization and its applications in food processing: A review. Int. J. Chem. Stud. 2020, 8, 254–261. [Google Scholar] [CrossRef]
- Díaz-Hernández, A.; Gracida, J.; García-Almendárez, B.E.; Regalado, C.; Núñez, R.; Amaro-Reyes, A. Characterization of Magnetic Nanoparticles Coated with Chitosan: A Potential Approach for Enzyme Immobilization. J. Nanomater. 2018, 2018, 9468574. [Google Scholar] [CrossRef]
- Xu, J.; Sun, J.; Wang, Y.; Sheng, J.; Wang, F.; Sun, M. Application of Iron Magnetic Nanoparticles in Protein Immobilization. Molecules 2014, 19, 11465–11486. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef]
- Gao, L.; Fan, K.; Yan, X. Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications. Theranostics 2017, 7, 3207–3227. [Google Scholar] [CrossRef]
- Qin, T.; Ma, R.; Yin, Y.; Miao, X.; Chen, S.; Fan, K.; Xi, J.; Liu, Q.; Gu, Y.; Yin, Y.; et al. Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics 2019, 9, 6920–6935. [Google Scholar] [CrossRef]
- You, S.-M.; Park, J.-S.; Luo, K.; Jeong, K.-B.; Adra, H.J.; Kim, Y.-R. Modulation of the peroxidase-like activity of iron oxide nanoparticles by surface functionalization with polysaccharides and its application for the detection of glutathione. Carbohydr. Polym. 2021, 267, 118164. [Google Scholar] [CrossRef]
- Hernández-Hernández, A.A.; Álvarez-Romero, G.A.; Contreras-López, E.; Aguilar-Arteaga, K.; Castañeda-Ovando, A. Food Analysis by Microextraction Methods Based on the Use of Magnetic Nanoparticles as Supports: Recent Advances. Food Anal. Methods 2017, 10, 2974–2993. [Google Scholar] [CrossRef]
- Speroni, F.; Elviri, L.; Careri, M.; Mangia, A. Magnetic Particles Functionalized with PAMAM-Dendrimers and Antibodies: A New System for an ELISA Method Able to Detect Ara H3/4 Peanut Allergen in Foods. In Proceedings of the Analytical and Bioanalytical Chemistry; Springer: Berlin/Heidelberg, Germany, 2010; Volume 397, pp. 3035–3042. [Google Scholar]
- Cao, M.; Li, Z.; Wang, J.; Ge, W.; Yue, T.; Li, R.; Colvin, V.L.; Yu, W.W. Food related applications of magnetic iron oxide nanoparticles: Enzyme immobilization, protein purification, and food analysis. Trends Food Sci. Technol. 2012, 27, 47–56. [Google Scholar] [CrossRef]
- Limchoowong, N.; Sricharoen, P.; Areerob, Y.; Nuengmatcha, P.; Sripakdee, T.; Techawongstien, S.; Chanthai, S. Preconcentration and trace determination of copper (II) in Thai food recipes using Fe3O4 @Chi–GQDs nanocomposites as a new magnetic adsorbent. Food Chem. 2017, 230, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Bi, C.; He, X.; Chen, L.; Zhang, Y. Preparation of molecularly imprinted polymers based on magnetic carbon nanotubes for determination of sulfamethoxazole in food samples. RSC Adv. 2015, 5, 70309–70318. [Google Scholar] [CrossRef]
- Abolhasani, J.; Khanmiri, R.H.; Babazadeh, M.; Ghorbani-Kalhor, E.; Edjlali, L.; Hassanpour, A. Determination of Hg(II) ions in sea food samples after extraction and preconcentration by novel Fe3O4@SiO2@polythiophene magnetic nanocomposite. Environ. Monit. Assess. 2015, 187, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Asgharinezhad, A.A.; Ebrahimzadeh, H. Determination of Trace Amounts of Cd(II), Cu(II), and Ni(II) in Food Samples Using a Novel Functionalized Magnetic Nanosorbent. Food Anal. Methods 2016, 9, 876–888. [Google Scholar] [CrossRef]
- He, D.; Zhang, X.; Gao, B.; Wang, L.; Zhao, Q.; Chen, H.; Wang, H.; Zhao, C. Preparation of magnetic molecularly imprinted polymer for the extraction of melamine from milk followed by liquid chromatography-tandem mass spectrometry. Food Control. 2014, 36, 36–41. [Google Scholar] [CrossRef]
- Yu, X.; Ang, H.C.; Yang, H.; Zheng, C.; Zhang, Y. Low temperature cleanup combined with magnetic nanoparticle extraction to determine pyrethroids residue in vegetables oils. Food Control. 2017, 74, 112–120. [Google Scholar] [CrossRef]
- Pirouz, M.J.; Beyki, M.H.; Shemirani, F. Anhydride functionalised calcium ferrite nanoparticles: A new selective magnetic material for enrichment of lead ions from water and food samples. Food Chem. 2015, 170, 131–137. [Google Scholar] [CrossRef]
- Chen, H.; Deng, X.; Ding, G.; Qiao, Y. The synthesis, adsorption mechanism and application of polyethyleneimine functionalized magnetic nanoparticles for the analysis of synthetic colorants in candies and beverages. Food Chem. 2019, 293, 340–347. [Google Scholar] [CrossRef]
- Yu, C.; Guo, J.; Gu, H. Electrocatalytical Oxidation of Nitrite and Its Determination Based on Au@Fe3O4 Nanoparticles. Electroanalysis 2010, 22, 1005–1011. [Google Scholar] [CrossRef]
- Wen, C.-Y.; Hu, J.; Zhang, Z.-L.; Tian, Z.-Q.; Ou, G.-P.; Liao, Y.-L.; Li, Y.; Xie, M.; Sun, Z.-Y.; Pang, D.-W. One-Step Sensitive Detection of Salmonella typhimurium by Coupling Magnetic Capture and Fluorescence Identification with Functional Nanospheres. Anal. Chem. 2013, 85, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Qu, L.; Wimbrow, A.N.; Jiang, X.; Sun, Y. Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. Int. J. Food Microbiol. 2007, 118, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Jenkins, D.M.; Su, W.W. Rapid concentration of bacteria using submicron magnetic anion exchangers for improving PCR-based multiplex pathogen detection. J. Microbiol. Methods 2011, 86, 69–77. [Google Scholar] [CrossRef]
- Chen, X.; Wu, X.; Gan, M.; Xu, F.; He, L.; Yang, D.; Xu, H.; Shah, N.P.; Wei, H. Rapid detection of Staphylococcus aureus in dairy and meat foods by combination of capture with silica-coated magnetic nanoparticles and thermophilic helicase-dependent isothermal amplification. J. Dairy Sci. 2015, 98, 1563–1570. [Google Scholar] [CrossRef] [Green Version]
- Gravel, A.; Doyen, A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov. Food Sci. Emerg. Technol. 2020, 59, 102272. [Google Scholar] [CrossRef]
- Khan, S.; Roser, D.; Davies, C.; Peters, G.; Stuetz, R.; Tucker, R.; Ashbolt, N. Chemical contaminants in feedlot wastes: Concentrations, effects and attenuation. Environ. Int. 2008, 34, 839–859. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Cui, X.; Hao, Y.; Zhang, L.; Liu, D.; Tang, Y. A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17β-estradiol in milk. Food Chem. 2016, 194, 1040–1047. [Google Scholar] [CrossRef]
- Luo, Y.-B.; Yu, Q.-W.; Yuan, B.-F.; Feng, Y.-Q. Fast microextraction of phthalate acid esters from beverage, environmental water and perfume samples by magnetic multi-walled carbon nanotubes. Talanta 2012, 90, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Chauhan, A.K. Iron nanoparticles as a promising compound for food fortification in iron deficiency anemia: A review. J. Food Sci. Technol. 2021, 59, 3319–3335. [Google Scholar] [CrossRef]
- Von Moos, L.M.; Schneider, M.; Hilty, F.M.; Hilbe, M.; Arnold, M.; Ziegler, N.; Mato, D.S.; Winkler, H.; Tarik, M.; Ludwig, C.; et al. Iron phosphate nanoparticles for food fortification: Biological effects in rats and human cell lines. Nanotoxicology 2017, 11, 496–506. [Google Scholar] [CrossRef]
- Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K.M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 2015, 44, 8576–8607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perfecto, A.; Elgy, C.; Valsami-Jones, E.; Sharp, P.; Hilty, F.; Fairweather-Tait, S. Mechanisms of Iron Uptake from Ferric Phosphate Nanoparticles in Human Intestinal Caco-2 Cells. Nutrients 2017, 9, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilty, F.M.; Knijnenburg, J.T.; Teleki, A.; Krumeich, F.; Hurrell, R.F.; Pratsinis, S.E.; Zimmermann, M.B. Incorporation of Mg and Ca into Nanostructured Fe2O3 Improves Fe Solubility in Dilute Acid and Sensory Characteristics in Foods. J. Food Sci. 2011, 76, N2–N10. [Google Scholar] [CrossRef] [PubMed]
- Mufti, N.; Atma, T.; Fuad, A.; Sutadji, E. Synthesis and Characterization of Black, Red and Yellow Nanoparticles Pigments from the Iron Sand. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2014; Volume 1617, pp. 165–169. [Google Scholar]
- Voss, L.; Hsiao, I.-L.; Ebisch, M.; Vidmar, J.; Dreiack, N.; Böhmert, L.; Stock, V.; Braeuning, A.; Loeschner, K.; Laux, P.; et al. The presence of iron oxide nanoparticles in the food pigment E172. Food Chem. 2020, 327, 127000. [Google Scholar] [CrossRef] [PubMed]
- Alshannaq, A.; Yu, J.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Horky, P.; Skalickova, S.; Baholet, D.; Skladanka, J. Nanoparticles as a Solution for Eliminating the Risk of Mycotoxins. Nanomaterials 2018, 8, 727. [Google Scholar] [CrossRef] [Green Version]
- Castro, S.S.L.; de Oliveira, M.F.; Stradiotto, N.R. Study of the Electrochemical Behavior of Histamine Using a Nafion®-Copper (II) Hexacyanoferrate Film-Modified Electrode. Int. J. Electrochem. Sci. 2010, 5, 1447–1456. [Google Scholar]
- Adivi, F.G.; Hashemi, P. Removal of histamine from biological samples by functionalized Fe3O4@Agarose@Silica nanoparticles and its fast determination by ion mobility spectrometry. Colloids Surf. B Biointerfaces 2021, 203, 111717. [Google Scholar] [CrossRef]
- Ranmadugala, D.; Ebrahiminezhad, A.; Manley-Harris, M.; Ghasemi, Y.; Berenjian, A. The effect of iron oxide nanoparticles on Bacillus subtilis biofilm, growth and viability. Process. Biochem. 2017, 62, 231–240. [Google Scholar] [CrossRef]
- Kobayashi, A.; Horikawa, M.; Kirschvink, J.L.; Golash, H.N. Magnetic control of heterogeneous ice nucleation with nanophase magnetite: Biophysical and agricultural implications. Proc. Natl. Acad. Sci. USA 2018, 115, 5383–5388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, T.; Hoptowit, R.; Jun, S. Effects of an oscillating magnetic field on ice nucleation in aqueous iron-oxide nanoparticle dispersions during supercooling and preservation of beef as a food application. J. Food Process. Eng. 2020, 43, e13525. [Google Scholar] [CrossRef]
- Liu, G.; Gao, J.; Ai, H.; Chen, X. Applications and Potential Toxicity of Magnetic Iron Oxide Nanoparticles. Small 2013, 9, 1533–1545. [Google Scholar] [CrossRef] [PubMed]
- Diao, M.; Yao, M. Use of zero-valent iron nanoparticles in inactivating microbes. Water Res. 2009, 43, 5243–5251. [Google Scholar] [CrossRef] [PubMed]
- Gabrielyan, L.; Hovhannisyan, A.; Gevorgyan, V.; Ananyan, M.; Trchounian, A. Antibacterial effects of iron oxide (Fe3O4) nanoparticles: Distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms. Appl. Microbiol. Biotechnol. 2019, 103, 2773–2782. [Google Scholar] [CrossRef] [PubMed]
- Murugan, K.; Wei, J.; Alsalhi, M.S.; Nicoletti, M.; Paulpandi, M.; Samidoss, C.M.; Dinesh, D.; Chandramohan, B.; Paneerselvam, C.; Subramaniam, J.; et al. Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors. Parasitol. Res. 2017, 116, 495–502. [Google Scholar] [CrossRef]
- Park, H.; Park, H.-J.; Kim, J.A.; Lee, S.H.; Kim, J.H.; Yoon, J.; Park, T.H. Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles. J. Microbiol. Methods 2011, 84, 41–45. [Google Scholar] [CrossRef]
- Rodrigues, D.; Bañobre-López, M.; Espiña, B.; Rivas, J.; Azeredo, J. Effect of magnetic hyperthermia on the structure of biofilm and cellular viability of a food spoilage bacterium. Biofouling 2013, 29, 1225–1232. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, N.; Wang, C.; Zhang, Q.; Sun, H. Effect of interactions between various humic acid fractions and iron nanoparticles on the toxicity to white rot fungus. Chemosphere 2020, 247, 125895. [Google Scholar] [CrossRef]
- Majeed, S.; Danish, M.; Ibrahim, M.N.M.; Sekeri, S.H.; Ansari, M.T.; Nanda, A.; Ahmad, G. Bacteria Mediated Synthesis of Iron Oxide Nanoparticles and Their Antibacterial, Antioxidant, Cytocompatibility Properties. J. Clust. Sci. 2021, 32, 1083–1094. [Google Scholar] [CrossRef]
- Parveen, S.; Wani, A.H.; Shah, M.A.; Devi, H.S.; Bhat, M.Y.; Koka, J.A. Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb. Pathog. 2018, 115, 287–292. [Google Scholar] [CrossRef]
- Vignesh, V.; Sathiyanarayanan, G.; Sathishkumar, G.; Parthiban, K.; Sathish-Kumar, K.; Thirumurugan, R. Formulation of iron oxide nanoparticles using exopolysaccharide: Evaluation of their antibacterial and anticancer activities. RSC Adv. 2015, 5, 27794–27804. [Google Scholar] [CrossRef]
- Aisida, S.O.; Madubuonu, N.; Alnasir, M.H.; Ahmad, I.; Botha, S.; Maaza, M.; Ezema, F.I. Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Appl. Nanosci. 2020, 10, 305–315. [Google Scholar] [CrossRef]
- Nadeem, M.; Khan, R.; Shah, N.; Bangash, I.R.; Abbasi, B.H.; Hano, C.; Liu, C.; Ullah, S.; Hashmi, S.S.; Nadhman, A.; et al. A Review of Microbial Mediated Iron Nanoparticles (IONPs) and Its Biomedical Applications. Nanomaterials 2022, 12, 130. [Google Scholar] [CrossRef] [PubMed]
- Gudkov, S.; Burmistrov, D.; Serov, D.; Rebezov, M.; Semenova, A.; Lisitsyn, A. Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties? Antibiotics 2021, 10, 884. [Google Scholar] [CrossRef]
- Maduray, K.; Parboosing, R. Metal Nanoparticles: A Promising Treatment for Viral and Arboviral Infections. Biol. Trace Elem. Res. 2020, 199, 3159–3176. [Google Scholar] [CrossRef] [PubMed]
- Caldeirão, A.; Araujo, H.; Tomasella, C.; Sampaio, C.; Oliveira, M.D.S.; Ramage, G.; Pessan, J.; Monteiro, D. Effects of Antifungal Carriers Based on Chitosan-Coated Iron Oxide Nanoparticles on Microcosm Biofilms. Antibiotics 2021, 10, 588. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.C.; Chan, W.C. Nanotoxicity: The growing need for in vivo study. Curr. Opin. Biotechnol. 2007, 18, 565–571. [Google Scholar] [CrossRef]
- Kedziorek, D.A.; Muja, N.; Walczak, P.; Ruiz-Cabello, J.; Gilad, A.A.; Jie, C.C.; Bulte, J.W.M. Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magn. Reson. Med. 2010, 63, 1031–1043. [Google Scholar] [CrossRef] [Green Version]
- Monteiro-Riviere, N.; Inman, A.; Zhang, L. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol. Appl. Pharmacol. 2009, 234, 222–235. [Google Scholar] [CrossRef]
- Malhotra, N.; Lee, J.S.; Liman, R.A.D.; Ruallo, J.M.S.; Villaflore, O.B.; Ger, T.R.; Hsiao, C. Der Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review. Molecules 2020, 25, 3159. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Jenkins, G.J.; Asadi, R.; Doak, S.H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010, 1, 5358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, W.; Guo, Z.; Gao, F.; Gao, Q.; Wang, D.; Liaw, B.-S.; Cai, Q.; Sun, X.; Wang, X.; Zhao, L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 2018, 8, 3284–3307. [Google Scholar] [CrossRef] [PubMed]
- Ankamwar, B.; Lai, T.C.; Huang, J.H.; Liu, R.S.; Hsiao, M.; Chen, C.H.; Hwu, Y.K. Biocompatibility of Fe3O4nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 2010, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, Z.; Wang, J. Systematic evaluation of biocompatibility of magnetic Fe3O4 nanoparticles with six different mammalian cell lines. J. Nanoparticle Res. 2011, 13, 199–212. [Google Scholar] [CrossRef]
- Zhou, X.; Shi, Y.; Ren, L.; Bao, S.; Han, Y.; Wu, S.; Zhang, H.; Zhong, L.; Zhang, Q. Controllable synthesis, magnetic and biocompatible properties of Fe3O4 and α-Fe2O3 nanocrystals. J. Solid State Chem. 2012, 196, 138–144. [Google Scholar] [CrossRef]
- Chu, M.; Shao, Y.; Peng, J.; Dai, X.; Li, H.; Wu, Q.; Shi, D. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 2013, 34, 4078–4088. [Google Scholar] [CrossRef]
- Fan, H.-M.; Olivo, M.; Shuter, B.; Yi, J.-B.; Bhuvaneswari, R.; Tan, H.-R.; Xing, G.-C.; Ng, C.-T.; Liu, L.; Lucky, S.S.; et al. Quantum Dot Capped Magnetite Nanorings as High Performance Nanoprobe for Multiphoton Fluorescence and Magnetic Resonance Imaging. J. Am. Chem. Soc. 2010, 132, 14803–14811. [Google Scholar] [CrossRef]
- Weissleder, R.; Nahrendorf, M.; Pittet, M.J. Imaging macrophages with nanoparticles. Nat. Mater. 2014, 13, 125–138. [Google Scholar] [CrossRef]
- Veiseh, O.; Gunn, J.W.; Zhang, M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 2010, 62, 284–304. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; He, Q.; Jiang, C. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res. Lett. 2008, 3, 397–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Mulens-Arias, V.; Rojas, J.M.; Sanz-Ortega, L.; Portilla, Y.; Pérez-Yagüe, S.; Barber, D.F. Polyethylenimine-coated superparamagnetic iron oxide nanoparticles impair in vitro and in vivo angiogenesis. Nanomed. Nanotechnol. Biol. Med. 2019, 21, 102063. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Chang, P.; Ji, C.; Zhang, F.; Zhou, Q.; Sun, M.; Sun, Y.; Politis, C.; Shavandi, A. Poly(acrylic acid) capped iron oxide nanoparticles via ligand exchange with antibacterial properties for biofilm applications. Colloids Surf. B Biointerfaces 2021, 197, 111385. [Google Scholar] [CrossRef]
- Okassa, L.N.; Marchais, H.; Douziech-Eyrolles, L.; Hervé, K.; Cohen-Jonathan, S.; Munnier, E.; Soucé, M.; Linassier, C.; Dubois, P.; Chourpa, I. Optimization of iron oxide nanoparticles encapsulation within poly(d,l-lactide-co-glycolide) sub-micron particles. Eur. J. Pharm. Biopharm. 2007, 67, 31–38. [Google Scholar] [CrossRef]
- Predescu, A.M.; Matei, E.; Berbecaru, A.C.; Pantilimon, C.; Drăgan, C.; Vidu, R.; Predescu, C.; Kuncser, V. Synthesis and characterization of dextran-coated iron oxide nanoparticles. R. Soc. Open Sci. 2018, 5, 171525. [Google Scholar] [CrossRef]
- Nadeem, M.; Ahmad, M.; Akhtar, M.S.; Shaari, A.; Riaz, S.; Naseem, S.; Masood, M.; Saeed, M.A. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications. PLoS ONE 2016, 11, e0158084. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Zhou, X. Synthesis and characterization of liposomes nano-composite-particles with hydrophobic magnetite as a MRI probe. Appl. Surf. Sci. 2016, 376, 252–260. [Google Scholar] [CrossRef]
- Xiong, F.; Wang, H.; Feng, Y.; Li, Y.; Hua, X.; Pang, X.; Zhang, S.; Song, L.; Zhang, Y.; Gu, N. Cardioprotective activity of iron oxide nanoparticles. Sci. Rep. 2015, 5, srep08579. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, Z.; Li, X.; Wang, L.; Yin, M.; Wang, L.; Chen, N.; Fan, C.; Song, H. Dietary Iron Oxide Nanoparticles Delay Aging and Ameliorate Neurodegeneration in Drosophila. Adv. Mater. 2016, 28, 1387–1393. [Google Scholar] [CrossRef]
- Feitosa, K.A.; Correia, R.D.O.; Fattori, A.C.M.; Albuquerque, Y.R.; Brassolatti, P.; Luna, G.F.; Rodolpho, J.M.D.A.; Nogueira, C.T.; Bernardi, J.C.; Speglich, C.; et al. Toxicological effects of the mixed iron oxide nanoparticle (Fe3O4 NP) on murine fibroblasts LA-9. J. Toxicol. Environ. Health Part A 2022, 85, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tu, Q.; Zhao, B.; An, Y.; Wang, J.-C.; Liu, W.; Yuan, M.-S.; Ahmed, S.M.; Xu, J.; Liu, R.; et al. Effects of poly(l-lysine)-modified Fe3O4 nanoparticles on endogenous reactive oxygen species in cancer stem cells. Biomaterials 2013, 34, 1155–1169. [Google Scholar] [CrossRef] [PubMed]
- Bellova, A.; Bystrenova, E.; Koneracka, M.; Kopcansky, P.; Valle, F.; Tomasovicova, N.; Timko, M.; Bagelova, J.; Biscarini, F.; Gazova, Z. Effect of Fe3O4magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology 2010, 21, 065103. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Möller, L. Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chem. Res. Toxicol. 2008, 21, 1726–1732. [Google Scholar] [CrossRef]
Method | Type | Shape | Size | References |
---|---|---|---|---|
Chemical reduction method | α-Fe | spherical | 21 nm | [9] |
Fe0 | spherical | 10–80 nm | [10] | |
Co-precipitation | Fe3O4 and FeO | different | 8.5 nm | [11] |
Fe3O4 | - | 20–22 nm | [12] | |
Fe3O4 | spherical | 15 nm | [13] | |
γ-Fe2O3 | spherical | 11.40 and 7.3657 nm | [14] | |
γ-Fe2O3 | spherical | from 5 to 8 nm | [15] | |
Fe3O4 | - | 13.9 nm | [16] | |
FeOH | polygonal disc | 6.60 nm | [17] | |
Microemulsion synthesis | Fe3O4 | spherical | ~12 nm | [18] |
γ-Fe2O3 | spherical | >10 nm | [19] | |
Fe3O4 | - | 8–16 nm | [20] | |
Thermal decomposition | Fe and Fe3O4 | spherical | 5.41 and 7.38 nm | [21] |
Superparamagnetic iron oxide | 2–30 nm | [22] | ||
Fe3O4 | 11 nm | [23] | ||
Fe1−xO@Fe3−xO4 | cubes | 17.5 nm length 6.3, nm thickness | [24] | |
Hydrothermal synthesis | α-Fe2O3 or Fe3O4 | cubic and spherical | 25 or 14 nm, respectively | [25] |
α-Fe2O3 | spherical | 15.6 nm | [26] | |
FeO | rhombohedral | 22, 14, 8 nm | [27] | |
Sonochemical process | α-Fe2O3 | rhombohedral | From ~12 nm to ~19 nm | [28] |
Fe3O4 | - | 20 nm | [29] | |
Non-aqueous method | γ-Fe2O3 | acicular shaped | major axis: 17 nm; minor axis: 1.7 nm | [30] |
Sol–gel method | Fe3O4 | spherical | 79.04 nm | [31] |
α-Fe2O3 | spherical and spheroid-shaped | 12.7 nm | [32] |
Microorganism | Species | NPs | Precursor | References |
---|---|---|---|---|
Bacteria | Actinobacter sp. | γ-Fe2O3 maghemite Fe3O4 magnetite | aqueous potassium ferricyanide/ferrocyanide K3[Fe(CN)6]/ K4[Fe(CN)6] | [38] |
Actinobacter sp. | maghemite (γ-Fe2O3) and greigite (Fe3S4) | aqueous solution ferrous salts | [37] | |
Thermoanaerobacter sp. | Fe3O4 magnetite | FeOOH | [39] | |
Bacillus subtilis | Fe3O4 | Fe2O3 | [40] | |
Thiobacillus thioparus | Fe3O4 magnetite | FeSO4 | [41] | |
Alcaligenes faecalis | Fe or their oxides | Fe2O3FeSO4 | [42] | |
Fungi | Pochonia chlamydosporiumAspergillus fumigatus Aspergillus wentii Curvularia lunata Chaetmium globosum | Fe or their oxides | Fe2O3 FeSO4 | [42] |
Alternaria alternata | γ-Fe2O3 and α-Fe2O3 | FeCl3 | [43] | |
Trichoderma asperellum Phialemoniopsis ocularis Fusarium incarnatum | Fe oxides | FeCl3 FeCl2 | [44] | |
Algae | Sargassum muticum | Fe3O4 | ferric chloride solution | [45] |
Chlorococcum sp. | Fe | iron chloride | [46] |
Part of Plant | Species | Precursor | References |
---|---|---|---|
Leaves | Quercus spp. | iron(III) chloride solution | [47] |
Coriandrum sativum | Ferric Chloride | [48] | |
Eucalyptus spp. | FeSO4 and Ni(NO3)2 | [49] | |
Moringa oleifera | Iron nitrate(III) (Fe(NO3)3·9H2O) | [50] | |
Rosmarinus officinalis | FeSO4 | [51] | |
Daphne mezereum | FeCl3·6H2O | [52] | |
Cassia fistula | Fe2O3 | [53] | |
Fruits | Piper spp. | FeCl2 and K2PdCl4 | [54] |
Terminalia bellirica Moringa oleifera | ferric chloride heptahydrate (FeCl2·7H2O) and potassium ferricyanide (K3Fe(CN)6) | [55] | |
Peel | Artocarpus heterophyllus | FeCl2 | [56] |
Garcinia mangostana | iron(II) chloride tetrahydrate (FeCl2·4H2O ≥ 99%) and iron(III) chloride hexahydrate (FeCl3·6H2O, 97%) | [57] | |
Flower | Hibiscus sabdariffa | FeCl3 | [58] |
Seeds | Punica granatum | iron chloride | [59] |
Trigonella foenum-graecum | FeCl3·6H2O | [60] | |
Syzygium cumini | FeCl3·6H2O | [61] | |
Roots | Chromolaena odorata | solution of Fe(II) and Fe(III) | [62] |
Zingiber officinale | ferric chloride FeCl3 | [63] | |
Brans | Sorghum moench | FeCl3 | [64] |
Buds | Syzygium aromaticum | iron chloride tetra-hydrate | [65] |
Type of Reagent | Material | Precursor | Nanoparticles | References |
---|---|---|---|---|
Biopolymer | Starch | FeSO4·7H2O | Fe3O4 | [68] |
Starch | FeCl3 | Fe-Pd nanoparticles | [69] | |
Sodium alginate | FeCl3 | Fe3O4 | [70] | |
Agar | FeCl2·4H2O FeCl3·6H2O | Fe3O4 | [71] | |
Polyphenol | Proanthocyanidin | ferric chloride solution | PACFeNPs | [70] |
Acid | Ascorbic acid | FeCl2·4H2O and 2 mM of FeCl3·6H2O | SPION | [72] |
Aspartic acid | ferrous chloride tetra-hydrate (FeCl2·H2O), ferric chloride hexa-hydrate (FeCl3·6H2O) | A-IONPs | [73] | |
Palmitic acid | rust | Fe3O4 | [74] | |
L-glutamic acid L-glutamine L-arginine L-cysteine | FeSO4·7H2O | nZVI | [75] | |
Oil | Sunflower oil | FeCl3·6H2O | nZVI | [76] |
Food Type | Analyzed Substance/Organism | Material for Functionalized IONPs | References |
---|---|---|---|
Thai food | Cu(II) | chitosan–graphene quantum dots | [106] |
milk and honey | sulfamethoxazole | molecularly imprinted polymers | [107] |
fish, shrimp, canned tuna | Hg(II) | SiO2@polythiophene | [108] |
cantaloupe, apple, nectarine | Cd(II), Cu(II), Ni(II) | 2-aminobenzothiazole | [109] |
milk | melamine | SiO2@MIPs | [110] |
vegetable oil | pesticide | polystyrene | [111] |
canned tuna fish, canned tomato paste, parsley, milk | Pb(II) | 3-aminopropyl-trie- thoxysilane@ phthalic anhydride | [112] |
candies and beverages | synthetic colorants | polyethyleneimine | [113] |
sausage | nitrate | Au@l-cysteine | [114] |
milk | Salmonella typhimurium | CdSe/ZnS QDs with NH 2−PEG−CM(MW 3400) as spacers to be conjugated withantibodies | [115] |
milk | Listeria monocytogenes | carboxyl with rabbit anti-Listeria monocytogenes | [116] |
IONPs | Microorganism | Species | Effect | References |
---|---|---|---|---|
Fe3O4/SiO2 vancomycin | bacteria | Bacillus cereus Staphylococcus aureus Shigella boydii Escherichia coli | inhibition of bacterial growth | [18] |
Fe0 | bacteria | Escherichia coli | inactivation | [10] |
Bacillus subtilis Escherichia coli Staphylococcus epidermidis | 3% provided full inhibition of microbial growth | [86] | ||
Bacillus subtilis var. niger Pseudomonas fluorescens | inactivation | [138] | ||
fungus | Aspergillus versicolor | inactivation | ||
Geotrichum candidum Rhodotorula rubra | 3% provided full inhibition of microbial growth | [86] | ||
S-Fe0 | bacteria | Pseudomonas spp. HLS-6 Escherichia coli DH5α | oxidative stress in the bacteria, destroys the cell structure and damages the intracellular DNA | [139] |
IONzymy | viruses | Influenza A | induces peroxidation of membrane lipids in synthesized liposomes, inactivates viruses | [101] |
Fe3O4 | bacteria | Escherichia coli BW 25113 Enterococcus hirae ATCC 9790 | change in membrane permeability, bactericidal effect on E. coli | [140] |
protozoan | Plasmodium falciparum | inhibited replication by inhibiting E protein expression | [141] | |
virus | serotype DEN-2 | |||
Superparamagnetic iron oxide | bacteria | Pseudomonas aeruginosa PA01 | disintegration of the bacterial cell membrane by hyperthermia | [142] |
Pseudomonas fluorescens | [143] | |||
γ-Fe2O3 | fungus | Phanerochaete chrysosporium | concentration and exposure time affected malondialdehyde content, reactive oxygen species production and lactate dehydrogenase (LDH) activity | [144] |
γ-Fe2O3 and α- Fe2O3 | bacteria | Escherichia coli Pseudomonas aeruginosa Bacillus subtilis Staphylococcus aureus | inhibition of bacterial growth | [43] |
IONPs | bacteria | Staphylococcus aureus Staphylococcus epidermidis Escherichia coli Salmonella typhi Vibrio cholera | [145] | |
fungus | Trichothecium roseum, Cladosporium herbarum, Penicillium chrysogenum Alternaria alternate Aspergillus niger | inhibitory effect on growth | [146] | |
Aeromonas hydrophila (ATCC 49140) Aeromonas hydrophila (MTCC 1739) Aeromonas sobria (MTCC 3613) Aeromonas hydrophila | [147] | |||
FeOH | bacteria | Staphylococcus aureus | excellent antimicrobial activity | [17] |
FeO-NPs/FeO-NRs | bacteria | Staphylococcus aureus Escherichia coli Pseudomonas aeruginosa, Shigella Salmonella typhi Pasteurella | at 10 μg mL−1, it showed a zone of growth inhibition | [148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Góral, D.; Marczuk, A.; Góral-Kowalczyk, M.; Koval, I.; Andrejko, D. Application of Iron Nanoparticle-Based Materials in the Food Industry. Materials 2023, 16, 780. https://doi.org/10.3390/ma16020780
Góral D, Marczuk A, Góral-Kowalczyk M, Koval I, Andrejko D. Application of Iron Nanoparticle-Based Materials in the Food Industry. Materials. 2023; 16(2):780. https://doi.org/10.3390/ma16020780
Chicago/Turabian StyleGóral, Dariusz, Andrzej Marczuk, Małgorzata Góral-Kowalczyk, Iryna Koval, and Dariusz Andrejko. 2023. "Application of Iron Nanoparticle-Based Materials in the Food Industry" Materials 16, no. 2: 780. https://doi.org/10.3390/ma16020780
APA StyleGóral, D., Marczuk, A., Góral-Kowalczyk, M., Koval, I., & Andrejko, D. (2023). Application of Iron Nanoparticle-Based Materials in the Food Industry. Materials, 16(2), 780. https://doi.org/10.3390/ma16020780