Strengthening of Reinforced Concrete Non-Circular Columns with FRP
Abstract
:1. Introduction
2. Experimental Program
2.1. Specimen Details
2.2. Materials
2.3. Specimen Preparation and Test Setup
3. Test Results
3.1. Compressive Load Capacity
3.2. Failure Modes
4. Numerical Analysis
4.1. Modeling
4.2. Analysis Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Billah, A.H.M.M.; Alam, M. Shahria. Performance-Based Seismic Design of Shape Memory Alloy–Reinforced Concrete Bridge Piers. J. Struct. Eng. 2016, 142, 2–6. [Google Scholar] [CrossRef]
- Fabbrocino, G.; Verderame, G.M.; Manfredi, G. Experimental behaviour of anchored smooth rebars in old type reinforced concrete buildings. Eng. Struct. 2005, 27, 1575–1585. [Google Scholar] [CrossRef]
- Kaplan, H.; Yilmaz, S. Seismic Strengthening of Reinforced Concrete Buildings. In Earthquake-Resistant Structures; Intech Publications: London, UK, 2012; ISBN 979-953-307-680-4. [Google Scholar]
- Arani, K.K.; Marefat, M.S.; Amrollahi-Biucky, A.; Khanmohammadi, M. Experimental seismic evaluation of old concrete columns reinforced by plain bars. Struct. Des. Tall Spec. Build. 2010, 22, 267–290. [Google Scholar] [CrossRef]
- Vandoros, K.G.; Dritsos, S.E. Concrete jacket construction detail effectiveness when strengthening RC columns. Constr. Build. Mater. 2008, 22, 264–276. [Google Scholar] [CrossRef]
- Mourad, S.M.; Shannag, M.J. Repair and strengthening of reinforced concrete square columns using ferrocement jackets. Cem. Concr. Compos. 2012, 34, 288–294. [Google Scholar] [CrossRef]
- Kaish, A.B.M.A.; Jamil, M.; Raman, S.N.; Zain, M.F.M.; Nahar, L. Ferrocement composites for strengthening of concrete columns: A review. Constr. Build. Mater. 2018, 160, 326–340. [Google Scholar] [CrossRef]
- Li, Y.F.; Chen, S.H.; Chang, K.C.; Liu, K.Y. A constitutive model of concrete confined by steel reinforcements and steel jackets. Can. J. Civ. Eng. 2005, 32, 279–288. [Google Scholar] [CrossRef]
- Adam, J.M.; Ivorra, S.; Pallares, F.J.; Giménez, E.; Calderón, P.A. Axially loaded RC columns strengthened by steel cages. Proc. Inst. Civ. Eng. Struct. Build. 2009, 162, 199–208. [Google Scholar] [CrossRef]
- Toutanji, H.; Zhao, L.; Zhang, Y. Flexural behavior of reinforced concrete beams externally strengthened with CFRP sheets bonded with an inorganic matrix. Eng. Struct. 2006, 28, 557–566. [Google Scholar] [CrossRef]
- Yilmaz, S.; Özen, M.A.; Yardim, Y. Tensile behavior of post-installed chemical anchors embedded to low strength concrete. Constr. Build. Mater. 2013, 47, 861–866. [Google Scholar] [CrossRef]
- Xhahysa, A.; Yardim, Y. Analytical and Experimental Behavior of a Novel Anchorage Layout for FRP Confined Rectangular Columns. In Proceedings of the 2nd International Balkans Conference on Challenges of Civil Engineering, Tirana, Albania, 23–25 May 2013. [Google Scholar]
- Rousakis, T.C.; Karabinis, A.I.; Kiousis, P.D. FRP-confined concrete members: Axial compression experiments and plasticity modelling. Eng. Struct. 2007, 29, 1343–1353. [Google Scholar] [CrossRef]
- Green, M.F.; Bisby, L.A.; Fam, A.Z.; Kodur, V.K.R. FRP confined concrete columns: Behaviour under extreme conditions. Cem. Concr. Compos. 2006, 28, 928–937. [Google Scholar] [CrossRef]
- Barrington, J.; Dickson, D.; Bisby, L.; Stratford, T. Strain development and hoop strain efficiency in FRP confined square columns. Am. Concr. Inst. ACI Spec. Publ. 2011, 1, 147–166. [Google Scholar] [CrossRef]
- Bakis, C.E.; Bank, L.C.; Brown, V.L.; Cosenza, E.; Davalos, J.F.; Lesko, J.J.; Machida, A.; Rizkalla, S.H.; Triantafillou, T.C. Fiber-Reinforced Polymer Composites for Construction-State-of-the-Art Review. J. Compos. Constr. 2003, 6, 369–383. [Google Scholar] [CrossRef]
- Parvin, A.; Brighton, D. FRP composites strengthening of concrete columns under various loading conditions. Polymers 2014, 6, 1040–1056. [Google Scholar] [CrossRef]
- Matthys, S.; Toutanji, H.; Taerwe, L. Stress–Strain Behavior of Large-Scale Circular Columns Confined with FRP Composites. J. Struct. Eng. 2006, 132, 123–133. [Google Scholar] [CrossRef]
- Hu, B. An improved criterion for sufficiently/insufficiently FRP-confined concrete derived from ultimate axial stress. Eng. Struct. 2013, 46, 431–446. [Google Scholar] [CrossRef]
- Zeng, J.J.; Lin, G.; Teng, J.G.; Li, L.J. Behavior of large-scale FRP-confined rectangular RC columns under axial compression. Eng. Struct. 2018, 174, 629–645. [Google Scholar] [CrossRef]
- Chen, J.F.; Li, S.Q.; Bisby, L.A. Factors Affecting the Ultimate Condition of FRP-Wrapped Concrete Columns. J. Compos. Constr. 2013, 17, 67–78. [Google Scholar] [CrossRef]
- Toutanji, H.; Han, M.; Gilbert, J.; Matthys, S. Behavior of Large-Scale Rectangular Columns Confined with FRP Composites. J. Compos. Constr. 2010, 14, 62–71. [Google Scholar] [CrossRef]
- Abdallah, A.E.; El-Salakawy, E.F. Seismic performance of GFRP-RC circular columns with different aspect ratios and concrete strengths. Eng. Struct. 2022, 257, 114092. [Google Scholar] [CrossRef]
- ACI 440.2R-17. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. American Concrete Institute: Farmington Hills, MI, USA, 2017. [CrossRef]
- Rousakis, T.C.; Karabinis, A.I. Substandard reinforced concrete members subjected to compression: FRP confining effects. Mater. Struct. 2008, 41, 1595–1611. [Google Scholar] [CrossRef]
- Wang, L.M.; Wu, Y.F. Effect of corner radius on the performance of CFRP-confined square concrete columns: Test. Eng. Struct. 2008, 30, 493–505. [Google Scholar] [CrossRef]
- Zeng, J.J.; Liao, J.J.; Ye, Y.Y.; Guo, Y.C.; Zheng, Y.; Tan, L.H. Behavior of FRP spiral strip-confined concrete under cyclic axial compression. Constr. Build. Mater. 2021, 295, 123544. [Google Scholar] [CrossRef]
- Hussain, Q.; Ruangrassamee, A.; Tangtermsirikul, S.; Joyklad, P. Behavior of concrete confined with epoxy bonded fiber ropes under axial load. Constr. Build. Mater. 2020, 263, 120093. [Google Scholar] [CrossRef]
- De Luca, A.; Nardone, F.; Matta, F.; Nanni, A.; Lignola, G.P.; Prota, A. Structural Evaluation of Full-Scale FRP-Confined Reinforced Concrete Columns. J. Compos. Constr. 2011, 15, 112–123. [Google Scholar] [CrossRef]
- Wu, Y.F.; Wei, Y.Y. Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns. Eng. Struct. 2010, 32, 32–45. [Google Scholar] [CrossRef]
- EN 12390-3. Testing Hardened Concrete, Compressive Strength of Test Specimens, European Norm. European Committee for Standardization: Brussels, Belgium, 2019.
- ISO 1920-4. Testing of Concrete—Part 4: Strength of Hardened Concrete. International Organization for Standardization: Geneva, Switzerland, 2005.
- Zhang, H.W.; Smith, S.T. Influence of FRP anchor fan configuration and dowel angle on anchoring FRP plates. Compos. Part B Eng. 2012, 43, 3516–3527. [Google Scholar] [CrossRef]
- Zhang, H.W.; Smith, S.T.; Kim, S.J. Optimisation of carbon and glass FRP anchor design. Constr. Build. Mater. 2012, 32, 1–12. [Google Scholar] [CrossRef]
- Parvin, A.; Jamwal, A.S. Performance of externally FRP reinforced columns for changes in angle and thickness of the wrap and concrete strength. Compos. Struct. 2006, 73, 451–457. [Google Scholar] [CrossRef]
- Saenz, N.; Pantelides, C.P. Strain-based confinement model for FRP-confined concrete. J. Struct. Eng. 2007, 133, 825–833. [Google Scholar] [CrossRef]
Sample Dimensions (cm) | Series | No. of Tested Samples | FRP Anchor Type | No. of Anchors per Face |
---|---|---|---|---|
15 × 15 × 30 | A-0 | 1 | Unreinforced | |
15 × 15 × 30 | A-1 | 1 | Reinforced without anchorage | |
15 × 15 × 30 | A-S-1 | 1 | Simple | 1 |
15 × 15 × 30 | A-C-1 | 2 | Corner | 1 |
15 × 15 × 30 | A-S-2 | 1 | Simple | 2 |
15 × 15 × 30 | A-C-2 | 2 | Corner | 2 |
15 × 15 × 30 | A-F-2 | 2 | Fan | 2 |
20 × 20 × 30 | B-0 | 1 | Unreinforced | |
20 × 20 × 30 | B-1 | 1 | Reinforced without anchorage | |
20 × 20 × 30 | B-S-1 | 1 | Simple | 1 |
20 × 20 × 30 | B-C-1 | 2 | Corner | 1 |
20 × 20 × 30 | B-S-2 | 1 | Simple | 2 |
20 × 20 × 30 | B-C-2 | 2 | Corner | 2 |
20 × 20 × 30 | B-F-2 | 2 | Fan | 2 |
Simple Anchorage | Corner Anchorage | Fan Anchorage | ||||
---|---|---|---|---|---|---|
Concrete Sample Dimensions (cm) | 15 × 15 × 30 | 20 × 20 × 30 | 15 × 15 × 30 | 20 × 20 × 30 | 15 × 15 × 30 | 20 × 20 × 30 |
Fan Length (cm) | 6.5 | 7.5 | 15 | 20 | 8 | 12 |
Hole Depth (cm) | 4 | 5 | 4 | 5 | 7 | 7 |
Hole Diam. (cm) | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
Hole Angle to Concrete Face (°) | 90 | 90 | 90 | 90 | 42 | 42 |
Water (kg/m3) | 200 |
Portland cement (kg/m3) | 290 |
Cement Type | CEM II/A-L 32.5R |
Fine aggregate (kg/m3) | 930 |
Coarse aggregate (kg/m3) | 940 |
Fiber type | Carbon |
Orientation | unidirectional sheet |
Fiber dry weight density (g/m2) | 230 |
Fiber tensile strength (MPa) | 4300 * |
Fiber Young’s modulus (GPa) | 238 * |
Fiber elongation at break (%) | 1.8 |
Series | εco (-) | fcc (MPa) | εcu (-) | fcu (MPa) | (fcc − fco)/fco (%) | (fcc − fo)/fo (%) | fcu/fcc (%) |
---|---|---|---|---|---|---|---|
A-0 | 0.0022 | 28.5 (fo) | 0.0025 | 18.1 | _ | _ | 63.2 |
A-1 | 0.006 | 34.1 (fco) | 0.0115 | 24.1 | _ | 23.15 | 70.6 |
A-S-1 | 0.012 | 37.2 | 0.0166 | 35.7 | 9.41 | 30.52 | 95.9 |
A-S-2 | 0.0087 | 35.0 | 0.0135 | 32.9 | 2.94 | 26.31 | 94.2 |
A-C-1 * | 0.010 | 39.0 | 0.0167 | 36.1 | 14.7 | 36.85 | 92.3 |
A-C-2 * | 0.010 | 36.0 | 0.0137 | 32.0 | 5.88 | 24.56 | 88.9 |
A-F-2 * | 0.012 | 39.5 | 0.0163 | 36.8 | 16.17 | 38.50 | 93.2 |
B-0 | 0.00255 | 28.1 (fo) | 0.0064 | 19.1 | _ | _ | 67.9 |
B-1 | 0.0048 | 31.9 (fco) | 0.0910 | 24.0 | _ | 14.3 | 75.0 |
B-S-1 | 0.0062 | 34.1 | 0.0117 | 31.2 | 6.56 | 21.8 | 91.5 |
B-S-2 | 0.0089 | 32.7 | 0.0150 | 29.5 | 2.19 | 16.8 | 90.2 |
B-C-1 * | 0.0074 | 34.9 | 0.0165 | 32.8 | 9.06 | 24.6 | 94.0 |
B-C-2 * | 0.0095 | 37.3 | 0.0167 | 34.1 | 16.6 | 36.3 | 91.4 |
B-F-2 * | 0.0080 | 37.6 | 0.0135 | 30.0 | 17.5 | 36.6 | 79.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yardim, Y.; Yilmaz, S.; Corradi, M.; Thanoon, W.A. Strengthening of Reinforced Concrete Non-Circular Columns with FRP. Materials 2023, 16, 6973. https://doi.org/10.3390/ma16216973
Yardim Y, Yilmaz S, Corradi M, Thanoon WA. Strengthening of Reinforced Concrete Non-Circular Columns with FRP. Materials. 2023; 16(21):6973. https://doi.org/10.3390/ma16216973
Chicago/Turabian StyleYardim, Yavuz, Salih Yilmaz, Marco Corradi, and Waleed A. Thanoon. 2023. "Strengthening of Reinforced Concrete Non-Circular Columns with FRP" Materials 16, no. 21: 6973. https://doi.org/10.3390/ma16216973
APA StyleYardim, Y., Yilmaz, S., Corradi, M., & Thanoon, W. A. (2023). Strengthening of Reinforced Concrete Non-Circular Columns with FRP. Materials, 16(21), 6973. https://doi.org/10.3390/ma16216973