Phenolic Compounds from By-Products for Functional Textiles
Abstract
:1. Introduction
2. Overview of the Publications
2.1. Literature Research Methodology
2.2. Literature Research Results
3. Sources of Phenolic Compounds for Textile Applications
3.1. Pure Phenolic Compounds
Phenolic Compound | Purpose/Functional Activities | Textile/Fabric | Ref. |
---|---|---|---|
Baicalin | Antibacterial, antioxidant | Polyamide | [28,29] |
Caffeic acid | Antioxidant, deodorizing, hydrophilicity, UV protection | Nylon, silk, wool | [21] |
Catechol | Antimicrobial, antioxidant, UV protection | Cotton, jute, polyethylene terephthalate, wool | [31,32] |
Diphenolic acid | Antibacterial, antiviral | Cotton | [39] |
p-phenylenediamine | Antimicrobial, antioxidant | Cotton, wool, polyethylene terephthalate | [31] |
Phloroglucinol | Antibacterial, antioxidant, UV protection | Cotton, jute, wool | [30,32,33] |
Pyrogallol | Antibacterial, antioxidant, UV protection | Cotton, jute, wool | [30,32,33] |
Pyrocatechol | Antibacterial, antioxidant | Cotton, wool | [30] |
Quercetin | Antibacterial, antioxidant | Cotton, polyamide, wool | [29,40] |
Resorcinol | Antibacterial, antioxidant, UV protection | Cotton, jute, linen cellulose, wool | [30,32,33,34] |
Resveratrol | Antioxidant | Cotton, polyamide | [23] |
Rutin | Antibacterial, antioxidant | Cotton, polyamide, wool | [29,40] |
Salicylic acid | Antibacterial, UV protection | Linen cellulose | [34] |
Tannic acid | Antibacterial, hydrophobicity, UV protection | Cotton, viscose, wool | [35,36,41] |
3.2. Raw Materials and By-Products
Source | Phenolic Compounds | Purpose/Functional Activities | Textile/Fabric | Ref. |
---|---|---|---|---|
Acacia auriculiformis L. bark | Polyphenols, tannins, flavonoids | Dyeing, antibacterial, UV protection | Cotton, silk, wool | [50] |
Acacia nilotica L. bark | Acacetin, ellagic acid, quercetin | Dyeing, antioxidant | Wool | [51] |
A. nilotica pods | Polygalloytannin, tannin, quercetin, acacetin, ethyl gallate, digallic acid | Dyeing, antibacterial, antioxidant; | Wool | [52] |
A. nilotica commercial powder | Quercetin, acacetin | Dyeing, antioxidant, UV protection | Wool | [53] |
Acridocarpus excelsus bark (by-product) | Polyphenols, flavonoids, condensed tannins, monomeric anthocyanins | Dyeing, antimicrobial, antioxidant | Cotton, silk | [54] |
Alkanna tinctoria roots | Alkannin, shikonin | Dyeing, antioxidant, UV protection | Wool | [55] |
Almond skin (by-product) | Polyphenols | Dyeing | Wool | [17] |
Aloe vera rinds (by-product) | Polyphenols, flavonoids | Dyeing, UV protection | Silk | [42] |
Amaranthus viridis plant | Polyphenols, flavonoids | Dyeing, UV protection | Cotton | [56] |
Banana floral stem (by-product) | Anthocyanin, anthraquinone, flavonoids, tannin | Dyeing, UV protection | Cotton | [57] |
Black tea | Theaflavins, thearubigin | Dyeing | Cotton | [58] |
Black tea (Keemun variety) stems and powder waste (by-product) | Theaflavins, theaflavin gallates, catechin | Dyeing, antibacterial, UV protection | Flax | [59] |
Buckwheat hull (by-product) | Polyphenols, quercetin, rutin | Dyeing, antibacterial, UV protection | Wool | [60] |
Camellia sinensis green tea | Catechin, epicatechin, epigallocatechin, epicatechin gallate and epigallocatechin gallate, ferulic acid | Dyeing, antibacterial, antioxidant, UV protection | Cotton, linen, wool | [61,62,63] |
Carrot (Daucus carota L.) fresh roots (by-product) | Condensed tannins, anthocyanins, hydroxycinnamic acid derivatives | Dyeing, antioxidant | Hemp, wool | [25] |
Cassia alata flower petals | Polyphenols, flavonoids | Dyeing, antibacterial | Cotton, leather, silk | [64] |
Celandine (Chelidonium majus L.) fresh leaves and stems | Polyphenols | Dyeing, antimicrobial | Wool | [10] |
Ceriops tagal bark (by-product) | Polyphenols, flavonoids, condensed tannins, monomeric anthocyanins | Dyeing, antimicrobial, antioxidant | Cotton, silk | [54] |
Chebulic myrobalan (Terminalia chebula) | Polyphenols, hydrolyzable tannins, chebulagic acid, chebulinic acid, gallic acid, ellagic acid | Dyeing; antibacterial, antioxidant, UV protection | Cotton, wool | [4,55,65] |
Chestnut shells (Castanea crenata) (by-product) | Polyphenols, ellagic acid, gallic acid, hydrolyzable tannins, ellagitannins, flavonoids | Dyeing, antibacterial, antioxidant, UV protection | Cotton | [66,67] |
Chickpea (Cicer arietinum L.) husk (by-product) | Polyphenols, tannins, flavonoids | Dyeing, antimicrobial, UV protection | Cotton, silk, wool | [68] |
Chinese gallnut (Galla chinensis) | Polyphenols, gallotannin, gallic acid, methyl gallate | Dyeing, deodorizing/antibacterial | Cotton, silk, wool | [69,70,71] |
Chinese skullcap (Scutellaria baicalensis) | Baicalin | Antimicrobial, antioxidant, UV protection | Linen | [28] |
Chinese sumac gall (Rhus chinensis)-derived gallotannin (commercial) | Gallotannin | Dyeing, antioxidant, antistatic, UV protection | Jute | [72] |
Chinese tallow (Sapium sebiferum L.) fallen leaves (by-product) | Polyphenols, tannins, flavonoids | Dyeing, antibacterial, antioxidant, UV protection | Wool | [73] |
Cinnamomum camphora tree fallen leaves (by-product) | Polyphenolics, flavonoids, tannins, anthocyanins, quercetin, kaempferol, rutin | Dyeing, antibacterial, UV protection | Wool, silk | [74,75] |
Cooper plant (Acalypha wilkesiana) leaves | Polyphenols, gallic acid, quercetin, tannins, corilagin, geranin | Dyeing | Cotton | [76] |
Cork industry by-products: cork-cooking wastewater (CCW), expanded black cork condensate (EBCC) | CCW—polyphenols, tannins, flavonoids, anthraquinones; EBCC—polyphenols | Dyeing, antibacterial | Cotton, wool | [77] |
Croton urucurana Baill. bark | Tannins | Dyeing, UV protection | Wool | [78] |
Curry plant (Helichrysum italicum Roth) flowers | Pyrogallol, chlorogenic acid, gallic acid, cynarin, naringenin, pinocembrin, chrysin, coumarin | Dyeing, UV protection | Cotton, flax, polypropylene | [15,79] |
Date palm pits (Phoenix dactylifera) | Polyphenols, gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, p-coumaric acid, ferulic acid | Dyeing | Cotton | [80,81] |
Delonix regia flowers | Quercetin, gallic acid | Dyeing, antioxidant, UV protection | Wool | [55] |
Dioscorea cirrhosa tuber (by-product) | Condensed tannins | Dyeing, antibacterial, antioxidant, flame retardance | Silk | [82] |
Eucalyptus (Eucalyptus camaldulensis) leaves | Quercetin, rutin, ellagic acid | Dyeing | Cotton, wool | [40] |
Eucalyptus (E. grandis) liquid residue from lumber steaming | Condensed tannins, quercetin, ellagic acid, rutin | Dyeing | Cotton, nylon, wool | [19] |
Feijoa peel (by-product) | Procyanidin B1, epicatechin, quercetin-3-galactoside, gallic acid, quercetin | Dyeing, antibacterial, antistatic, antioxidant, hydrophilicity, insect resistance, UV protection | Wool | [16] |
Fennel (Foeniculum vulgare) leaves (by-product) | Polyphenols, flavonoids (kaempferol, quercetin) | Dyeing | Cotton | [83] |
Ginkgo (Ginkgo biloba L.) tree leaves (by-product) | Polyphenols, flavonoids (quercetin, quercitrin, rutin) | Dyeing, antibacterial | Wool | [24] |
Glochidion eriocarpum Champ leaves | Ellagic acid, gallic acid, quercetin | Dyeing, antibacterial, UV protection | Cotton | [84] |
Grape seed proanthocyanidins (commercial) | Proanthocyanidins | Dyeing, antibacterial, antioxidant, anti-pilling, antistatic, flame retardance, UV protection | Silk, cashmere, cotton | [18,27,85] |
Groundnut (Arachis hypogaea) testa (by-product) | Polyphenols, tannins, flavonoids | Dyeing, antibacterial, UV protection | Cotton | [86] |
Henna (Lawsonia inermis) | Polyphenols, tannin, gallic acid | Dyeing, antibacterial, antioxidant, UV protection | Linen, wool | [26,52] |
Hibiscus flowers (Hibiscus sabdariffa) | Hydroxy citric acid, hibiscus acid, chlorogenic acid, hydroxy coumarin, N-feruloyl tyramine, rutin, apigenin, myricetin quercetin, anthocyanins | Dyeing, antimicrobial, antioxidant, UV protection | Cotton, wool | [87] |
Houttuynia cordata perennial herb | Polyphenols, flavonoids (quercitrin) | Dyeing, antioxidant | Polyurethane nanofibers | [46] |
Hypercium scabrum L. plant | Polyphenols, tannins, flavonoids | Dyeing | Wool | [88] |
Kalanchoe pinnata leaves | Polyphenols, tannins, flavonoids | Dyeing, antibacterial, antioxidant | Milk, silk, soya, wool | [89] |
Immature pine cone | Tannins | Dyeing, deodorizing/antibacterial | Cotton, silk, wool | [90] |
Lotus leaf | Polyphenols, flavonoids | Dyeing, hydrophobicity | Polyester | [91] |
Lycium ruthenicum Murray dried fruits | Anthocyanins | Dyeing, antibacterial, antioxidant | Wool | [92] |
Madder (Rubia tinctorum L.) roots | Anthraquinones (purpurin, xantho-purpurin, rubiadin, pseudopurpurin, munjistin, lucidin) | Dyeing | Polyester | [1] |
Madder powder | Alizarin, ruberythric acid, rubiadin, purpurin | Dyeing, antibacterial | Wool | [93] |
Mango (Manifera indica L.) seed kernel (by-product) | Ferulic acid, gallic acid, cinnamic acid, vanillin, tannin, mangiferin | Dyeing, antibacterial, antistatic, antioxidant, hydrophilicity, insect resistance, UV protection | Cotton, wool | [16,49] |
Mango leaves (by-product); | Gallic acid, mangiferin, iriflophenone | Dyeing | Cotton | [94] |
Mango leaves cv. Kent (by-product) | Gallic acid, mangiferin, iriflophenones, quercetin | Dyeing, antibacterial, antioxidant | Polyester | [95] |
Mangrove bark (by-product) | Phenolics, catechin, epicatechin, epigallocatechin, epigallocatechin gallate | Dyeing | Cotton | [96] |
Melia azedarach bark (by-product) | Polyphenolics, flavonoids | Dyeing, anti-moth, fluorescence, UV protection | Wool | [97] |
Mushroom (Cortinarius semisanguineus) | Anthraquinones | Dyeing | Cellulose fabrics | [98] |
Naturally colored cottons (brown) | Condensed tannins | Antibacterial | Cotton | [99] |
Oak bark (by-product) | Gallotannin, ellagitannin, quercetin, quercetin-3-oglucoside | Dyeing, antimicrobial, UV protection | Silk | [6] |
Olive mill wastewater | Luteolin, quercetin, apigenin | Dyeing | Wool | [100] |
Onion (Allium cepa L.) skin (by-product) | Condensed tannins, anthocyanins, quercetin, quercetin derivatives, protocatechuic acid | Dyeing, antioxidant | Hemp, wool | [25,101] |
Onion (A. cepa cv. Settonia) skin (by-product) | Quercetin aglycone, quercetin glycosides | Dyeing | Cellulose fabrics | [98] |
Onion (A. cepa cv. Red Baron) skin (by-product) | Quercetin, taxifolin, cyanidin, delphinidin, peonidin | Dyeing, UV protection | Cotton | [102] |
Onion (A. cepa cv. Dorata di Parma) skin (by-product) | Protocatechuic acid, vanillic acid quercetin, ellagic acid, isorhamnetin | Dyeing, antibacterial, antioxidant, UV protection | Wool | [103] |
Orange peel (by-product) | Phenolic colorants; p-coumaric acid, vanillic acid, gallic acid, caffeic acid, ferulic acid, catechin, sinensetin, nobiletin | Dyeing, antimicrobial, antioxidant, insect resistance, UV protection | Viscose, wool | [104,105] |
Papaver rhoeas flower | Polyphenols, flavonoids | Dyeing | Cotton, wool, viscose | [106] |
Peanut (Arachis hypogaea L.) red skins (by-product) | Homovanillic acid, protocatechuic acid, gallic acid, procyanidin B4, catechin, kaempferol | Dyeing, antibacterial, antioxidant, UV protection | Viscose | [107] |
Peanut roasted red skins (by-product) | Polyphenols, tannins, flavonoids | Dyeing, UV protection | Cotton, silk, wool | [108] |
Pelargonium graveolens stems and leaves (by-product) | Polyphenols, flavonoids, condensed tannins | Dyeing | Wool | [109] |
Pineapple (Ananas cosmosus) peel (by-product) | Polyphenols, flavonoids | Dyeing, antibacterial, antioxidant, UV protection | Wool | [110] |
Pomegranate peel (Punica granatum L.) (by-product) | Polyphenols, punicalagin, ellagic acid, gallic acid, tannins, flavonoids, quercetin, N-methyl granatonine | Dyeing, antimicrobial, UV protection | Cotton, hemp, polyamide, wool | [43,44,111,112,113] |
Portulaca oleracea L. plant | α-Linolenic acid, catechin, kaempferol, p-coumaric acid, quercetin, tannic acid | Dyeing, antibacterial, UV protection | Cotton | [114] |
Purple-fleshed sweet potato | Anthocyanins (cyanidin, peonidin), phenolic acids | Dyeing, antibacterial, antioxidant | Cotton, silk, wool | [115,116] |
Pterocarpus santalinus tree waste (by-product) | Flavonoids (isoflavones, pterocarpans, santalins) | Dyeing, antibacterial, antioxidant | Wool | [117] |
Quince (Cydonia oblonga) leaves (by-product) | Flavonoids, condensed tannins | Dyeing, antimicrobial | Wool | [118] |
Red pepper (Capsicum annum L.) seeds, skin leftovers, and stems (by-products) | Polyphenols, flavonoids | Dyeing, antibacterial | Wool | [119] |
Reseda luteola L. plant | Polyphenols, flavonoids (7-O-glucoside luteolin) | Dyeing, antibacterial | Wool | [47] |
Rhizophora mucronata bark (by-product) | Polyphenols, flavonoids, condensed tannins, monomeric anthocyanins | Dyeing, antimicrobial, antioxidant | Cotton, silk | [54] |
Rice straw (by-product) | Polyphenols, flavonoids | Dyeing, antibacterial, flame retardance, UV protection | Wool | [120] |
Saffron (Crocus sativus L.) flower waste (by-product) | Polyphenols, flavonoids | Dyeing, antioxidant | Cotton | [121] |
Saffron petals | Miricetin, quercetin, delphinidin, petunidin, kampferol | Dyeing, antibacterial | Wool | [93] |
Sage (Salvia officinalis L.) dried leaves and stems (by-product) | Hydroxycinnamic acid derivatives, luteolin | Dyeing, antioxidant | Hemp, wool | [25] |
Scrophularia striata aerial parts (by-product) | Cinnamic acid, caffeic acid, vanillin, trans-ferulic acid, hesperidin, rosmarinic acid; quercetin, nepitrine, isorhamnetin | Dyeing, antibacterial | Wool | [122] |
Solanum nigrum plant | Polyphenols, flavonoids | Dyeing, UV protection | Cotton | [56] |
Sorghum husk (by-product) | Polyphenols, flavonoids (apigeninidin, luteolinidin) | Dyeing, UV protection | Cotton, wool | [123,124] |
Spent coffee grounds (by-product) | Polyphenols, tannins, catechins, flavanols, chlorogenic acid, caffeoylquinic acid | Dyeing, antibacterial, antioxidant, UV protection | Silk, wool | [125] |
Sweet potato (Ipomoea batatas) leaves (by-product) | Polyphenols, tannins, flavonoids | Dyeing, antibacterial, UV protection | Cotton, nylon, polyester, silk, wool | [126] |
Tamarix aphylla (L.) Karst. leaves | Apigenin, caffeic acid, ellagic acid, isorhamnetin, luteolin, p-coumaric acid, syringic acid; quercetin, tamarixetin | Dyeing | Cotton | [48] |
Tea polyphenols (commercial) | Catechin, gallocatechin, catechin gallate, gallocatechin gallate | Dyeing, hydrophobicity, UV protection | Cotton, silk, wool | [3,41] |
Tea stem waste (by-product) | Polyphenols | Dyeing, antibacterial, antioxidant, flame retardance | Silk | [127] |
Terminalia arjuna fruits | Polyphenols, tannins, flavonoids (lucenin, quercetin) | Dyeing | Cotton, nylon, silk | [128] |
T. arjuna powder (commercial) | Ellagic acid, baicalein | Dyeing, antioxidant, UV protection | Wool | [53] |
Thespesia populnea fruits | Polyphenols, tannins, flavonoids (lucenin, quercetin) | Dyeing | Cotton, nylon, silk | [128] |
Thyme (Thymus vulgaris L.) dried leaves and stems (by-product) | Hydroxycinnamic acid derivatives, luteolin | Dyeing, antioxidant | Hemp, wool | [25] |
Thyme essential oil/beeswax matrix emulsion | Polyphenols, flavonoids | Dyeing, antibacterial | Cotton | [129] |
Vine leaves (by-product) | Polyphenols, flavonoids | Dyeing, antibacterial | Viscose | [45] |
Walnut (Juglans regia L.) green husks (by-product) | Polyphenolics, tannins, punicalagin | Dyeing, antimicrobial | Wool | [112] |
Walnut shells | Tannic acid, juglone, gallic acid | Dyeing, antimicrobial | Wool | [130] |
Watermelon rind (by-product) | Anthocyanin, anthraquinone, hydrolyzable, condensed tannins, flavonoids, quercetin | Dyeing, UV protection | Cotton | [57,94] |
Wild lavender (Lavandula stoechas L.) | Hydroxycinnamic acid, flavonoids, coumarins, anthraquinones | Dyeing, UV protection | Cotton, flax | [15] |
Wild madder (Rubia peregrina L.) | Hydroxycinnamic acid, flavonoids, coumarins, anthraquinones | Dyeing, UV protection | Cotton, flax | [15] |
Woodfordia fruticosa adventitious roots (by-product) | Polyphenols, flavonoids, condensed tannins, monomeric anthocyanins | Dyeing, antimicrobial, antioxidant | Cotton, silk | [54] |
Xylocarpus granatum bark (by-product) | Polyphenols, flavonoids, condensed tannins, monomeric anthocyanins | Dyeing, antimicrobial, antioxidant | Cotton, silk | [54] |
4. Functional Properties of Phenolic Dyed Textile Fabrics
4.1. Antimicrobial/Antibacterial
4.2. UV Protection
4.3. Antioxidant
4.4. Flame Retardance
4.5. Other Functionalities
5. Potential Textile Industry Applications of Phenolic Dyes
6. Conclusions, Limitations, and Perspectives
- By-products from the agri-food industries are an excellent source of multifunctional natural dyes rich in phenolic compounds.
- Despite the increased research in this field, the screening of different by-products must continue to better understand their potential.
- There is great potential for antimicrobial, UV protective, and antioxidant activities of polyphenolic dyes, while other activities such as flame retardance and insect repellency are also gaining more attention.
- Eco-friendly dyeing practices must continue to be implemented and improved upon to achieve more sustainable dyeing processes.
- Bio-sourced mordants help provide a truly sustainable dyeing solution by eliminating the use of metallic mordants, but metallic mordants are still the main players in the industry. Thus, in conjunction with new natural dyes, biomordants should also be a main target of research.
- All studies reported were performed on a laboratory scale. Scale-ups and implementation of these processes in industrial settings should be a goal to understanding their practical and economic viability.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agnhage, T.; Perwuelz, A.; Behary, N. Towards Sustainable Rubia tinctorum L. Dyeing of Woven Fabric: How Life Cycle Assessment Can Contribute. J. Clean. Prod. 2017, 141, 1221–1230. [Google Scholar] [CrossRef]
- Rahman, S.S.; Siddiqua, S.; Cherian, C. Sustainable Applications of Textile Waste Fiber in the Construction and Geotechnical Industries: A Retrospect. Clean. Eng. Technol. 2022, 6, 100420. [Google Scholar] [CrossRef]
- Wang, F.; Gong, J.; Ren, Y.; Zhang, J. Eco-Dyeing with Biocolourant Based on Natural Compounds. R. Soc. Open Sci. 2018, 5, 171134. [Google Scholar] [CrossRef]
- Shabbir, M.; Rather, L.J.; Shahid-ul-Islam; Bukhari, M.N.; Shahid, M.; Ali Khan, M.; Mohammad, F. An Eco-Friendly Dyeing of Woolen Yarn by Terminalia Chebula Extract with Evaluations of Kinetic and Adsorption Characteristics. J. Adv. Res. 2016, 7, 473–482. [Google Scholar] [CrossRef]
- Javaid, R.; Qazi, U.Y. Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. Int. J. Environ. Res. Public. Health 2019, 16, 2066. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Liu, B.; Cheng, D.; Li, J.; Huang, F.; Lu, Y. Dyeing Characteristics and Functionability of Tussah Silk Fabric with Oak Bark Extract. Text. Res. J. 2017, 87, 1806–1817. [Google Scholar] [CrossRef]
- Yadav, S.; Tiwari, K.S.; Gupta, C.; Tiwari, M.K.; Khan, A.; Sonkar, S.P. A Brief Review on Natural Dyes, Pigments: Recent Advances and Future Perspectives. Results Chem. 2023, 5, 100733. [Google Scholar] [CrossRef]
- Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment. Chem. Rec. 2021, 21, 1570–1610. [Google Scholar] [CrossRef] [PubMed]
- Global Organic Textile Standard (GOTS). Version 4.0. Available online: www.global-standard.org (accessed on 6 November 2023).
- Danila, A.; Costea, M.; Profire, L.; Rimbu, C.M.; Baican, M.; Lupascu, F.; Tatarusanu, S.M.; Profire, B.S.; Muresan, E.I. A Sustainable Approach to a Cleaner Production of Antimicrobial and Biocompatible Protein Fibers. Polymers 2022, 14, 3194. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Mark, R.; Lyu, X.; Lee, J.J.L.; Parra-Saldívar, R.; Chen, W.N. Sustainable Production of Natural Phenolics for Functional Food Applications. J. Funct. Foods 2019, 57, 233–254. [Google Scholar] [CrossRef]
- Brudzyńska, P.; Sionkowska, A.; Grisel, M. Plant-Derived Colorants for Food, Cosmetic and Textile Industries: A Review. Materials 2021, 14, 3484. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Chen, X.; Qin, Y.R.; Zhang, Y.H.; Wang, X.P.; Wang, J.Y.; Ning, Z.X.; Ruan, Q.J.; Zhang, Y.S. Preparation and Characterization of a Novel Colorimetric Indicator Film Based on Gelatin/Polyvinyl Alcohol Incorporating Mulberry Anthocyanin Extracts for Monitoring Fish Freshness. Food Res. Int. 2019, 126, 108604. [Google Scholar] [CrossRef] [PubMed]
- Grifoni, D.; Bacci, L.; Di Lonardo, S.; Pinelli, P.; Scardigli, A.; Camilli, F.; Sabatini, F.; Zipoli, G.; Romani, A. UV Protective Properties of Cotton and Flax Fabrics Dyed with Multifunctional Plant Extracts. Dye. Pigment. 2014, 105, 89–96. [Google Scholar] [CrossRef]
- Hassan, M.M. Enhanced Insect-Resistance, UV Protection, and Antibacterial and Antistatic Properties Exhibited by Wool Fabric Treated with Polyphenols Extracted from Mango Seed Kernel and Feijoa Peel. RSC Adv. 2021, 11, 1482–1492. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Moreno, H.; Duran-Serra, A.; Prieto-Fuentes, R.; Álvarez del Castillo, M.D.; Macanás, J.; Carrillo-Navarrete, F. Almond Skin, a Bio-Waste for Green Dyeing of Wool Fibres. Text. Res. J. 2023, 93, 1030–1042. [Google Scholar] [CrossRef]
- Guo, L.; Yang, Z.Y.; Tang, R.C.; Yuan, H. Bin Preliminary Studies on the Application of Grape Seed Extract in the Dyeing and Functional Modification of Cotton Fabric. Biomolecules 2020, 10, 220. [Google Scholar] [CrossRef]
- Rossi, T.; Silva, P.M.S.; De Moura, L.F.; Araújo, M.C.; Brito, J.O.; Freeman, H.S. Waste from Eucalyptus Wood Steaming as a Natural Dye Source for Textile Fibers. J. Clean. Prod. 2017, 143, 303–310. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A Concise Overview on the Chemistry, Occurrence, and Human Health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef]
- Sun, S.S.; Xing, T.; Tang, R.C. Simultaneous Coloration and Functionalization of Wool, Silk, and Nylon with the Tyrosinase-Catalyzed Oxidation Products of Caffeic Acid. Ind. Eng. Chem. Res. 2013, 52, 8953–8961. [Google Scholar] [CrossRef]
- Pizzi, A. Tannins Medical / Pharmacological and Related Applications: A Critical Review. Sustain. Chem. Pharm. 2021, 22, 100481. [Google Scholar] [CrossRef]
- Alonso, C.; Martí, M.; Martínez, V.; Rubio, L.; Parra, J.L.; Coderch, L. Antioxidant Cosmeto-Textiles: Skin Assessment. Eur. J. Pharm. Biopharm. 2013, 84, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Rather, L.J.; Mir, S.S.; Ali, A.; Rizwanul Haque, Q.M.; Li, Q. Bio Colourants from the Waste Leaves of Ginkgo biloba L. Tree: Wool Dyeing and Antimicrobial Functionalization against Some Antibiotic-Resistant Bacterial Strains. Sustain. Chem. Pharm. 2022, 25, 100585. [Google Scholar] [CrossRef]
- Guinot, P.; Benonge, I.; Nicolett, G.; Gargadennec, A.; Andary, C.; Rapior, S. Combined Dyeing and Antioxidative Properties of Some Plant By-Products. Acta Bot. Gall. 2007, 154, 43–52. [Google Scholar] [CrossRef]
- Yadav, R.; Mathur, P.; Sheikh, J. Antibacterial, UV Protective and Antioxidant Linen Obtained by Natural Dyeing with Henna. Cellul. Chem. Technol. 2019, 53, 357–362. [Google Scholar] [CrossRef]
- Guo, L.; Yang, Z.Y.; Tang, R.C.; Yuan, H. Bin Grape Seed Proanthocyanidins: Novel Coloring, Flame-Retardant, and Antibacterial Agents for Silk. ACS Sustain. Chem. Eng. 2020, 8, 5966–5974. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Liu, Y.; Li, M. Advantages of Scutellaria baicalensis Extracts over Just Baicalin in the Ultrasonically Assisted Multi-Functional Treatment of Linen Fabrics. Cellulose 2020, 27, 4831–4846. [Google Scholar] [CrossRef]
- Li, Y.D.; Guan, J.P.; Tang, R.C.; Qiao, Y.F. Application of Natural Flavonoids to Impart Antioxidant and Antibacterial Activities to Polyamide Fiber for Health Care Applications. Antioxidants 2019, 8, 301. [Google Scholar] [CrossRef]
- Hong, K.H. Phenol Compounds Treated Cotton and Wool Fabrics for Developing Multi-Functional Clothing Materials. Fibers Polym. 2015, 16, 565–571. [Google Scholar] [CrossRef]
- Su, J.; Noro, J.; Silva, S.; Fu, J.; Wang, Q.; Ribeiro, A.; Silva, C.; Cavaco-Paulo, A. Antimicrobial Coating of Textiles by Laccase in Situ Polymerization of Catechol and P-Phenylenediamine. React. Funct. Polym. 2019, 136, 25–33. [Google Scholar] [CrossRef]
- Dong, A.; Yu, Y.; Fan, X.; Wang, Q.; Cavaco-Paulo, A. Enzymatic Coating of Jute Fabrics for Enhancing Anti-Ultraviolent Properties via in-Situ Polymerization of Polyhydric Phenols. J. Ind. Text. 2016, 46, 160–176. [Google Scholar] [CrossRef]
- Hong, K.H. Crosslinking Phenolic Compounds with Cotton Fabrics Using Succinic Acid to Develop Functional Clothing Materials. Fibers Polym. 2016, 17, 705–711. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Eid, B.M.; El-Zairy, E.M.; Emam, E.; Barakat, S. Environmentally Sound Approach for Imparting Antibacterial and UV-Protection Functionalities to Linen Cellulose Using Ascorbic Acid. Int. J. Biol. Macromol. 2019, 135, 88–96. [Google Scholar] [CrossRef]
- Bu, Y.; Zhang, S.; Cai, Y.; Yang, Y.; Ma, S.; Huang, J.; Yang, H.; Ye, D.; Zhou, Y.; Xu, W.; et al. Fabrication of Durable Antibacterial and Superhydrophobic Textiles via in Situ Synthesis of Silver Nanoparticle on Tannic Acid-Coated Viscose Textiles. Cellulose 2019, 26, 2109–2122. [Google Scholar] [CrossRef]
- Gu, S.; Yang, L.; Huang, W.; Bu, Y.; Chen, D.; Huang, J.; Zhou, Y.; Xu, W. Fabrication of Hydrophobic Cotton Fabrics Inspired by Polyphenol Chemistry. Cellulose 2017, 24, 2635–2646. [Google Scholar] [CrossRef]
- Antunes, R.S.; Ferraz, D.; Garcia, L.F.; Thomaz, D.V.; Luque, R.; Lobón, G.S.; Gil, E.d.S.; Lopes, F.M. Development of a Polyphenol Oxidase Biosensor from Jenipapo Fruit Extract (Genipa americana L.) and Determination of Phenolic Compounds in Textile Industrial Effluents. Biosensors 2018, 8, 47. [Google Scholar] [CrossRef]
- Anku, W.W.; Mamo, M.A.; Govender, P.P. Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods. In Phenolic Compounds–Natural Sources, Importance and Applications; InTech: London, UK, 2017. [Google Scholar]
- Shen, L.; Jiang, J.; Liu, J.; Fu, F.; Diao, H.; Liu, X. Cotton Fabrics with Antibacterial and Antiviral Properties Produced by a Simple Pad-Dry-Cure Process Using Diphenolic Acid. Appl. Surf. Sci. 2022, 600, 154152. [Google Scholar] [CrossRef]
- Mongkholrattanasit, R.; Kryštůfek, J.; Wiener, J.; Studničková, J. Properties of Wool and Cotton Fabrics Dyed with Eucalyptus, Tannin and Flavonoids. Fibres Text. East. Eur. 2011, 85, 90–95. [Google Scholar]
- Xing, L.; Wang, B.; Zhang, Y.; Yang, H.; Zhu, X.; Chen, G.; Xing, T. Universal Fabrication of Superhydrophobic and UV Resistant Cotton Fabric with Polyphenols. Cellulose 2021, 28, 11645–11663. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, L.; Wang, P.; Ran, R.; Zhang, T. Silk Textile Finished with Natural Dyes and UV Resistance Agents from Agricultural Waste Aloe Vera Rinds. J. Text. Inst. 2023, 1–7. [Google Scholar] [CrossRef]
- Otaviano, B.T.H.; Sannomiya, M.; de Queiroz, R.S.; Sánchez, A.A.C.; Freeman, H.S.; Mendoza, L.E.R.; Veliz, J.L.S.; Leon, M.M.G.; Leo, P.; da Costa, S.A.; et al. Natural Dye Extracted from Pomegranate Peel: Physicochemical Characterization, Dyeing of Cotton Fabric, Color Fastness, and Photoprotective Properties. Fibers Polym. 2023, 24, 1321–1332. [Google Scholar] [CrossRef]
- Bouaziz, A.; Dridi, D.; Gargoubi, S.; Chelbi, S.; Boudokhane, C.; Kenani, A.; Aroui, S. Analysis of the Coloring and Antibacterial Effects of Natural Dye: Pomegranate Peel. Coatings 2021, 11, 1277. [Google Scholar] [CrossRef]
- Muresan, E.I.; Diaconu, M.; Zaharia, C.; Rosu, G.; Danila, A.; Pui, A. Bioactive Textiles Obtained by Using Aqueous Extracts of Vine Leaves. Fibers Polym. 2020, 21, 2505–2512. [Google Scholar] [CrossRef]
- Chen, M.X.; Haider, M.K.; Kim, I.S.; Lee, J.S. Characterization of Antioxidant Houttuynia Cordata Extracts Loaded Polyurethane Nanofibers. Fash. Text. 2023, 10, 17. [Google Scholar] [CrossRef]
- Raji, Y.; Nadi, A.; Chemchame, Y.; Mechnou, I.; Bouari, A.E.L.; Cherkaoui, O.; Zyade, S. Eco-Friendly Extraction of Flavonoids Dyes from Moroccan (Reseda luteola L.), Wool Dyeing, and Antibacterial Effectiveness. Fibers Polym. 2023, 24, 1051–1065. [Google Scholar] [CrossRef]
- Baaka, N.; Mahfoudhi, A.; Haddar, W.; Mhenni, M.F.; Mighri, Z. Green Dyeing Process of Modified Cotton Fibres Using Natural Dyes Extracted from Tamarix aphylla (L.) Karst. Leaves. Nat. Prod. Res. 2017, 31, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ponce, M.T.; Medina-Ruiz, E.; Casas, L.; Mantell, C.; Martínez de la Ossa-Fernández, E.J. Development of Cotton Fabric Impregnated with Antioxidant Mango Polyphenols by Means of Supercritical Fluids. J. Supercrit. Fluids 2018, 140, 310–319. [Google Scholar] [CrossRef]
- Chakraborty, L.; Pandit, P.; Roy Maulik, S. Acacia Auriculiformis–A Natural Dye Used for Simultaneous Coloration and Functional Finishing on Textiles. J. Clean. Prod. 2020, 245, 118921. [Google Scholar] [CrossRef]
- Rather, L.J.; Akhter, S.; Padder, R.A.; Hassan, Q.P.; Hussain, M.; Khan, M.A.; Mohammad, F. Colorful and Semi Durable Antioxidant Finish of Woolen Yarn with Tannin Rich Extract of Acacia Nilotica Natural Dye. Dye. Pigment. 2017, 139, 812–819. [Google Scholar] [CrossRef]
- Alebeid, O.K.; Pei, L.; Elhassan, A.; Zhou, W.; Wang, J. Cleaner Dyeing and Antibacterial Activity of Wool Fabric Using Henna Dye Modified with Acacia Nilotica Pods. Clean. Technol. Environ. Policy 2020, 22, 2223–2230. [Google Scholar] [CrossRef]
- Rather, L.J.; Shabbir, M.; Li, Q.; Mohammad, F. Coloration, UV Protective, and Antioxidant Finishing of Wool Fabric Via Natural Dye Extracts: Cleaner Production of Bioactive Textiles. Environ. Prog. Sustain. Energy 2019, 38, 13187. [Google Scholar] [CrossRef]
- Andriamanantena, M.; Razafimbelo, F.F.; Raonizafinimanana, B.; Cardon, D.; Danthu, P.; Lebeau, J.; Petit, T.; Caro, Y. Alternative Sources of Red Dyes with High Stability and Antimicrobial Properties: Towards an Ecological and Sustainable Approach for Five Plant Species from Madagascar. J. Clean. Prod. 2021, 303, 126979. [Google Scholar] [CrossRef]
- Shabbir, M.; Mohammad, F. Multifunctional AgNPs@Wool: Colored, UV-Protective and Antioxidant Functional Textiles. Appl. Nanosci. 2018, 8, 545–555. [Google Scholar] [CrossRef]
- Saleem, M.A.; Nazir, A.; Nazir, F.; Ayaz, P.; Faizan, M.Q.; Usman, M.; Hussain, T. Comparison of UV Protection Properties of Cotton Fabrics Treated with Aqueous and Methanolic Extracts of Solanum Nigrum and Amaranthus Viridis Plants. Photodermatol. Photoimmunol. Photomed. 2019, 35, 93–99. [Google Scholar] [CrossRef]
- Rahman Liman, M.L.; Islam, M.T.; Repon, M.R.; Hossain, M.M.; Sarker, P. Comparative Dyeing Behavior and UV Protective Characteristics of Cotton Fabric Treated with Polyphenols Enriched Banana and Watermelon Biowaste. Sustain. Chem. Pharm. 2021, 21, 100417. [Google Scholar] [CrossRef]
- Rehman, A.; Irfan, M.; Hameed, A.; Saif, M.J.; Qayyum, M.A.; Farooq, T. Chemical-Free Dyeing of Cotton with Functional Natural Dye: A Pollution-Free and Cleaner Production Approach. Front. Environ. Sci. 2022, 10, 848245. [Google Scholar] [CrossRef]
- Wang, P.; Wu, H.; Zheng, X.; Bian, L.; Sun, Y.; Wang, Z.; Li, C. High-Binding-Fastness Dye from Functional Extracts of Keemun Black Tea Waste for Dyeing Flax Fabric. Color. Technol. 2022, 138, 255–265. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, J.; Huang, P.; Xing, S. Aqueous Extraction of Buckwheat Hull and Its Functional Application in Eco-Friendly Dyeing for Wool Fabric. Text. Res. J. 2020, 90, 641–654. [Google Scholar] [CrossRef]
- Shahid-ul-Islam; Butola, B.S.; Roy, A. Chitosan Polysaccharide as a Renewable Functional Agent to Develop Antibacterial, Antioxidant Activity and Colourful Shades on Wool Dyed with Tea Extract Polyphenols. Int. J. Biol. Macromol. 2018, 120, 1999–2006. [Google Scholar] [CrossRef]
- Kim, S. Dyeing Characteristics and UV Protection Property of Green Tea Dyed Cotton Fabrics -Focusing on the Effect of Chitosan Mordating Condition. Fibers Polym. 2006, 7, 255–261. [Google Scholar] [CrossRef]
- Saini, S.; Gupta, A.; Singh, N.; Sheikh, J. Functionalization of Linen Fabric Using Layer by Layer Treatment with Chitosan and Green Tea Extract. J. Ind. Eng. Chem. 2020, 82, 138–143. [Google Scholar] [CrossRef]
- Muruganandham, M.; Sivasubramanian, K.; Velmurugan, P.; Suresh Kumar, S.; Arumugam, N.; Almansour, A.I.; Suresh Kumar, R.; Manickam, S.; Pang, C.H.; Sivakumar, S. An Eco-Friendly Ultrasound Approach to Extracting Yellow Dye from Cassia Alata Flower Petals: Characterization, Dyeing, and Antibacterial Properties. Ultrason. Sonochem 2023, 98, 106519. [Google Scholar] [CrossRef]
- Singh, A.; Sheikh, J. Development of Mosquito Repellent, Antibacterial, Antioxidant and UV Protective Cotton Using a Novel Method of Azoic Dyeing with Terminalia Chebula. J. Nat. Fibers 2022, 19, 9642–9655. [Google Scholar] [CrossRef]
- Hong, K.H. Sustainable Functional Finishing for Cotton Fabrics Using Chestnut Shell Extract. Cellulose 2021, 28, 11729–11743. [Google Scholar] [CrossRef]
- Hong, K.H. Sustainable Functionalization for Cotton Fabrics by Printing with a Mixture of Chestnut Shell Extract and Alginate. Polym. Bull. 2023, 80, 6675–6692. [Google Scholar] [CrossRef]
- Jose, S.; Pandit, P.; Pandey, R. Chickpea Husk–A Potential Agro Waste for Coloration and Functional Finishing of Textiles. Ind. Crops Prod. 2019, 142, 111833. [Google Scholar] [CrossRef]
- Bai, R.; Yu, Y.; Wang, Q.; Yuan, J.; Fan, X. Effect of Laccase on Dyeing Properties of Polyphenol-Based Natural Dye for Wool Fabric. Fibers Polym. 2016, 17, 1613–1620. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Luo, L.; King, M.W. Natural Dye Extracted from Chinese Gall–The Application of Color and Antibacterial Activity to Wool Fabric. J. Clean. Prod. 2014, 80, 204–210. [Google Scholar] [CrossRef]
- Lee, Y.H.; Hwang, E.K.; Baek, Y.M.; Kim, H.-D. Deodorizing Function and Antibacterial Activity of Fabrics Dyed with Gallnut (Galla chinensis) Extract. Text. Res. J. 2015, 85, 1045–1054. [Google Scholar] [CrossRef]
- Hassan, M.M.; Saifullah, K. Sustainable Dyeing and Functionalization of Jute Fabric with a Chinese Sumac Gall-Derived Gallotannin Using Eco-Friendly Mordanting Agents. Cellulose 2021, 28, 5055–5070. [Google Scholar] [CrossRef]
- Zhou, Q.; Rather, L.J.; Ali, A.; Wang, W.; Zhang, Y.; Rizwanul Haque, Q.M.; Li, Q. Environmental Friendly Bioactive Finishing of Wool Textiles Using the Tannin-Rich Extracts of Chinese Tallow (Sapium sebiferum L.) Waste/Fallen Leaves. Dye. Pigment. 2020, 176, 108230. [Google Scholar] [CrossRef]
- Rather, L.J.; Ali, A.; Zhou, Q.; Ganie, S.A.; Gong, K.; Rizwanul Haque, Q.M.; Li, Q. Instrumental Characterization of Merino Wool Fibers Dyed with Cinnamomum Camphora Waste/Fallen Leaves Extract: An Efficient Waste Management Alternative. J. Clean. Prod. 2020, 273, 123021. [Google Scholar] [CrossRef]
- Gong, K.; Pan, Y.; Rather, L.J.; Wang, W.; Zhou, Q.; Zhang, T.; Li, Q. Natural Pigment during Flora Leaf Senescence and Its Application in Dyeing and UV Protection Finish of Silk and Wool–A Case Study of Cinnamomum Camphora. Dye. Pigment. 2019, 166, 114–121. [Google Scholar] [CrossRef]
- Rehman, A.; Ahmad, A.; Hameed, A.; Kiran, S.; Farooq, T. Green Dyeing of Modified Cotton Fabric with Acalypha Wilkesiana Leave Extracts. Sustain. Chem. Pharm. 2021, 21, 100432. [Google Scholar] [CrossRef]
- Pinheiro, M.N.C.; Symochko, L.; Castro, L.M. Valorization of Cork Industry By-Products as Sustainable Natural Dyes for Textiles. ACS Sustain. Chem. Eng. 2023, 11, 10555–10565. [Google Scholar] [CrossRef]
- Silva, P.M.d.S.; Fiaschitello, T.R.; de Queiroz, R.S.; Freeman, H.S.; da Costa, S.A.; Leo, P.; Montemor, A.F.; da Costa, S.M. Natural Dye from Croton Urucurana Baill. Bark: Extraction, Physicochemical Characterization, Textile Dyeing and Color Fastness Properties. Dye. Pigment. 2020, 173, 107953. [Google Scholar] [CrossRef]
- Maksimovic, S.; Tadic, V.; Zvezdanovic, J.; Zizovic, I. Utilization of Supercritical CO2 in Bioactive Principles Isolation from Helichrysum Italicum and Their Adsorption on Selected Fabrics. J. Supercrit. Fluids 2021, 171, 105197. [Google Scholar] [CrossRef]
- Souissi, M.; Guesmi, A.; Moussa, A. Valorization of Natural Dye Extracted from Date Palm Pits (Phoenix dactylifera) for Dyeing of Cotton Fabric. Part 1: Optimization of Extraction Process Using Taguchi Design. J. Clean. Prod. 2018, 202, 1045–1055. [Google Scholar] [CrossRef]
- Guesmi, A.; Ben Hamadi, N. Study on Optimizing Dyeing of Cotton Using Date Pits Extract as a Combined Source of Coloring Matter and Bio-Mordant. Nat. Prod. Res. 2018, 32, 810–814. [Google Scholar] [CrossRef]
- Yang, T.T.; Guan, J.P.; Tang, R.C.; Chen, G. Condensed Tannin from Dioscorea Cirrhosa Tuber as an Eco-Friendly and Durable Flame Retardant for Silk Textile. Ind. Crops Prod. 2018, 115, 16–25. [Google Scholar] [CrossRef]
- Haddar, W.; Elksibi, I.; Meksi, N.; Mhenni, M.F. Valorization of the Leaves of Fennel (Foeniculum vulgare) as Natural Dyes Fixed on Modified Cotton: A Dyeing Process Optimization Based on a Response Surface Methodology. Ind. Crops Prod. 2014, 52, 588–596. [Google Scholar] [CrossRef]
- Zhou, Y.; Tawiah, B.; Wang, L.; Li, Q. Enhancing the Affinity and Adsorption Efficiency of Glochidion Ericarpum Champ Leave Extract to Cotton for Colouristic and Functional Properties Integrating Trimethyl Chitosan and Ultrasonic Technique. Ind. Crops Prod. 2022, 186, 115255. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, N.; Ni, L.; Wei, Z.; Quan, H.; Zhou, Y. One-Pot High Efficiency Low Temperature Ultrasonic-Assisted Strategy for Fully Bio-Based Coloristic, Anti-Pilling, Antistatic, Bioactive and Reinforced Cashmere Using Grape Seed Proanthocyanidins. J. Clean. Prod. 2021, 315, 128148. [Google Scholar] [CrossRef]
- Pandit, P.; Jose, S.; Pandey, R. Groundnut Testa: An Industrial Agro-Processing Residue for the Coloring and Protective Finishing of Cotton Fabric. Waste Biomass Valorization 2021, 12, 3383–3394. [Google Scholar] [CrossRef]
- Rehan, M.; Ibrahim, G.E.; Mashaly, H.M.; Hasanin, M.; Rashad, H.G.; Mowafi, S. Simultaneous Dyeing and Multifunctional Finishing of Natural Fabrics with Hibiscus Flowers Extract. J. Clean. Prod. 2022, 374, 133992. [Google Scholar] [CrossRef]
- Safapour, S.; Rather, L.J.; Safapour, R.; Mir, S.S. Valorization of Bio-Colorants Extracted from Hypercium scabrum L. Plant for Sustainable and Ecological Coloration of Wool Yarns. Heliyon 2023, 9, e19439. [Google Scholar] [CrossRef]
- Rani, N.; Jajpura, L.; Butola, B.S. Sustainable Coloration of Protein Fibers Using Kalanchoe-Pinnata Leaf Extract. J. Nat. Fibers 2022, 19, 115–130. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, A.L.; Park, Y.G.; Hwang, E.K.; Baek, Y.M.; Cho, S.; Kim, H.-D. Colorimetric Assay and Deodorizing/Antibacterial Performance of Natural Fabrics Dyed with Immature Pine Cone Extract. Text. Res. J. 2018, 88, 731–743. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, C.; Zhu, N.; Gong, J.; Zhou, Z.; Sheng, D.; Zhou, S.; Wang, X.; Fu, Z.; Xia, L. Preparation of Polyester Yarns with Bright Color and Enhanced Hydrophobicity Using Lotus Leaf Powders. Ind. Crops Prod. 2023, 193, 116152. [Google Scholar] [CrossRef]
- Dong, Y.; Gu, J.; Wang, P.; Wen, H. Developed Functionalization of Wool Fabric with Extracts of Lycium Ruthenicum Murray and Potential Application in Healthy Care Textiles. Dye. Pigment. 2019, 163, 308–317. [Google Scholar] [CrossRef]
- Shahmoradi Ghaheh, F.; Mortazavi, S.M.; Alihosseini, F.; Fassihi, A.; Shams Nateri, A.; Abedi, D. Assessment of Antibacterial Activity of Wool Fabrics Dyed with Natural Dyes. J. Clean. Prod. 2014, 72, 139–145. [Google Scholar] [CrossRef]
- Liman, M.L.R.; Islam, M.T.; Hossain, M.M.; Sarker, P.; Repon, M.R. Environmentally Benign Dyeing Mechanism of Knitted Cotton Fabric with Condensed and Hydrolyzable Tannin Derivatives Enriched Bio-Waste Extracts. Environ. Technol. Innov. 2021, 23, 101621. [Google Scholar] [CrossRef]
- Sanchez-Sanchez, J.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; de la Ossa, E.J.M. Impregnation of Mango Leaf Extract into a Polyester Textile Using Supercritical Carbon Dioxide. J. Supercrit. Fluids 2017, 128, 208–217. [Google Scholar] [CrossRef]
- Vuthiganond, N.; Nakpathom, M.; Mongkholrattanasit, R. Metal-Free Dyeing of Cotton Fabric Using Mangrove Bark Polyphenols via Azoic Dyeing. Fibers Polym. 2018, 19, 2524–2532. [Google Scholar] [CrossRef]
- Tian, Y.; Lu, Y.; Zhang, Y.; Hou, X.; Zhang, Y. Extraction and Characterization of Natural Colorant from Melia Azedarach Bark and Its Utilization in Dyeing and Finishing of Wool. Sustain. Chem. Pharm. 2022, 27, 100647. [Google Scholar] [CrossRef]
- Räisänen, R.; Primetta, A.; Toukola, P.; Fager, S.; Ylänen, J. Biocolourants from Onion Crop Side Streams and Forest Mushroom for Regenerated Cellulose Fibres. Ind. Crops Prod. 2023, 198, 116748. [Google Scholar] [CrossRef]
- Ma, M.; Li, R.; Du, Y.; Tang, Z.; Zhou, W. Analysis of Antibacterial Properties of Naturally Colored Cottons. Text. Res. J. 2013, 83, 462–470. [Google Scholar] [CrossRef]
- Meksi, N.; Haddar, W.; Hammami, S.; Mhenni, M.F. Olive Mill Wastewater: A Potential Source of Natural Dyes for Textile Dyeing. Ind. Crops Prod. 2012, 40, 103–109. [Google Scholar] [CrossRef]
- Volpi, C.; Bartolini, D.; Brighenti, V.; Galli, F.; Tiecco, M.; Pellati, F.; Clementi, C.; Sardella, R. Antioxidant Power on Dermal Cells by Textiles Dyed with an Onion (Allium cepa L.) Skin Extract. Antioxidants 2021, 10, 1655. [Google Scholar] [CrossRef] [PubMed]
- Grande, R.; Räisänen, R.; Dou, J.; Rajala, S.; Malinen, K.; Nousiainen, P.A.; Österberg, M. In Situ Adsorption of Red Onion (Allium cepa) Natural Dye on Cellulose Model Films and Fabrics Exploiting Chitosan as a Natural Mordant. ACS Omega 2023, 8, 5451–5463. [Google Scholar] [CrossRef]
- Pucciarini, L.; Ianni, F.; Petesse, V.; Pellati, F.; Brighenti, V.; Volpi, C.; Gargaro, M.; Natalini, B.; Clementi, C.; Sardella, R. Onion (Allium cepa L.) Skin: A Rich Resource of Biomolecules for the Sustainable Production of Colored Biofunctional Textiles. Molecules 2019, 24, 634. [Google Scholar] [CrossRef]
- Hou, X.; Chen, X.; Cheng, Y.; Xu, H.; Chen, L.; Yang, Y. Dyeing and UV-Protection Properties of Water Extracts from Orange Peel. J. Clean. Prod. 2013, 52, 410–419. [Google Scholar] [CrossRef]
- Rehan, M.; Abdel-Wahed, N.A.M.; Farouk, A.; El-Zawahry, M.M. Extraction of Valuable Compounds from Orange Peel Waste for Advanced Functionalization of Cellulosic Surfaces. ACS Sustain. Chem. Eng. 2018, 6, 5911–5928. [Google Scholar] [CrossRef]
- Boussoum, M.O.; Ali-Nehari, A.; Ouldmokhtar, R.; George, B. Characterization of Extracts from Papaver Rhoeas and Potential Valorization of These Extracts in Dyeing Applications. Turk. J. Chem. 2021, 45, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- Rehan, M.; Elshemy, N.S.; Haggag, K.; Montaser, A.S.; Ibrahim, G.E. Phytochemicals and Volatile Compounds of Peanut Red Skin Extract: Simultaneous Coloration and in Situ Synthesis of Silver Nanoparticles for Multifunctional Viscose Fibers. Cellulose 2020, 27, 9893–9912. [Google Scholar] [CrossRef]
- Pandey, R.; Patel, S.; Pandit, P.; Nachimuthu, S.; Jose, S. Colouration of Textiles Using Roasted Peanut Skin- an Agro Processing Residue. J. Clean. Prod. 2018, 172, 1319–1326. [Google Scholar] [CrossRef]
- Moussa, I.; Ghezal, I.; Sakli, F. Valorization of Pelargonium Graveolens L’Hér. Hydrodistillation Solid Waste as Natural Dye for Wool Fabrics. J. Nat. Fibers 2023, 20, 2156966. [Google Scholar] [CrossRef]
- Sheikh, J.; Agrawal, A.; Garg, H.; Agarwal, A.; Mathur, P. Functionalization of Wool Fabric Using Pineapple Peel Extract (PPE) as a Natural Dye. AATCC J. Res. 2019, 6, 16–20. [Google Scholar] [CrossRef]
- Inprasit, T.; Pukkao, J.; Lertlaksameephan, N.; Chuenchom, A.; Motina, K.; Inprasit, W. Green Dyeing and Antibacterial Treatment of Hemp Fabrics Using Punica Granatum Peel Extracts. Int. J. Polym. Sci. 2020, 2020, 6084127. [Google Scholar] [CrossRef]
- Sadeghi-Kiakhani, M.; Tehrani-Bagha, A.R.; Gharanjig, K.; Hashemi, E. Use of Pomegranate Peels and Walnut Green Husks as the Green Antimicrobial Agents to Reduce the Consumption of Inorganic Nanoparticles on Wool Yarns. J. Clean. Prod. 2019, 231, 1463–1473. [Google Scholar] [CrossRef]
- Baseri, S. Eco-Friendly Production of Anti-UV and Antibacterial Cotton Fabrics via Waste Products. Cellulose 2020, 27, 10407–10423. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Weng, J.; Liu, X.; Qin, S.; Li, X.; Gong, J. Eco-Dyeing and Functional Finishing of Wool Fabric Based on Portulaca Oleracea L. as Colorant and Musa Basjoo as Natural Mordant. Arab. J. Chem. 2022, 15, 103624. [Google Scholar] [CrossRef]
- Yin, Y.; Jia, J.; Wang, T.; Wang, C. Optimization of Natural Anthocyanin Efficient Extracting from Purple Sweet Potato for Silk Fabric Dyeing. J. Clean. Prod. 2017, 149, 673–679. [Google Scholar] [CrossRef]
- Koh, E.; Hong, K.H. Functional Fabric Treatment Using Tannic Acid and Extract from Purple-Fleshed Sweet Potato. Text. Res. J. 2017, 87, 790–798. [Google Scholar] [CrossRef]
- Yongchun, D.; Wang, L.; Yan, Y.; Gu, J. Optimized Preparation and Dyeing of Pterocarpus Santalinus Waste Extract for Enhancing Healthy and Environmental Care Performance of Wool Fabric. J. Text. Inst. 2023, 1–15. [Google Scholar] [CrossRef]
- Cerempei, A.; Mureşan, E.I.; Cimpoeşu, N.; Carp-Cărare, C.; Rimbu, C. Dyeing and Antibacterial Properties of Aqueous Extracts from Quince (Cydonia oblonga) Leaves. Ind. Crops Prod. 2016, 94, 216–225. [Google Scholar] [CrossRef]
- El Ksibi, I.; Slama, R.B.; Faidi, K.; Ticha, M.B.; M’henni, M.F. Mixture Approach for Optimizing the Recovery of Colored Phenolics from Red Pepper (Capsicum annum L.) by-Products as Potential Source of Natural Dye and Assessment of Its Antimicrobial Activity. Ind. Crops Prod. 2015, 70, 34–40. [Google Scholar] [CrossRef]
- Kadam, S.; Sharma, A.; ul-Islam, S.; Bramhecha, I.; Sheikh, J. Utilization of Rice Straw as a Source of Biomolecules for Sustainable Multifunctional Finishing Vis a Vis Dyeing of Wool. J. Nat. Fibers 2020, 17, 1508–1518. [Google Scholar] [CrossRef]
- Lachguer, K.; Boudadi, I.; Fayzi, L.; El Merzougui, S.; El Bouchti, M.; Cherkaoui, O.; Serghini, M.A. Natural Extraction of Dyes from Saffron “Crocus Sativus L” Flower Waste, Cotton Dyeing, and Antioxidant Effectiveness. Pollution 2023, 9, 890–906. [Google Scholar] [CrossRef]
- Baseri, S. Agricultural Crop of Scrophularia Striata as a New Dye for Eco-Friendly Dyeing and Bioactive Finishing of Handwoven Piles. Sustain. Chem. Pharm. 2023, 33, 101088. [Google Scholar] [CrossRef]
- Hou, X.; Fang, F.; Guo, X.; Wizi, J.; Ma, B.; Tao, Y.; Yang, Y. Potential of Sorghum Husk Extracts as a Natural Functional Dye for Wool Fabrics. ACS Sustain. Chem. Eng. 2017, 5, 4589–4597. [Google Scholar] [CrossRef]
- Wizi, J.; Wang, L.; Hou, X.; Tao, Y.; Ma, B.; Yang, Y. Ultrasound-Microwave Assisted Extraction of Natural Colorants from Sorghum Husk with Different Solvents. Ind. Crops Prod. 2018, 120, 203–213. [Google Scholar] [CrossRef]
- Xia, W.; Li, Z.; Tang, Y.; Li, Q. Sustainable Recycling of Café Waste as Natural Bio Resource and Its Value Adding Applications in Green and Effective Dyeing/Bio Finishing of Textile. Sep. Purif. Technol. 2023, 309, 123091. [Google Scholar] [CrossRef]
- Fang, J.; Meng, C.; Zhang, G. Agricultural Waste of Ipomoea Batatas Leaves as a Source of Natural Dye for Green Coloration and Bio-Functional Finishing for Textile Fabrics. Ind. Crops Prod. 2022, 177, 114440. [Google Scholar] [CrossRef]
- Cheng, T.H.; Liu, Z.J.; Yang, J.Y.; Huang, Y.Z.; Tang, R.C.; Qiao, Y.F. Extraction of Functional Dyes from Tea Stem Waste in Alkaline Medium and Their Application for Simultaneous Coloration and Flame Retardant and Bioactive Functionalization of Silk. ACS Sustain. Chem. Eng. 2019, 7, 18405–18413. [Google Scholar] [CrossRef]
- Amutha, K.; Grace Annapoorani, S.; Sudhapriya, N. Dyeing of Textiles with Natural Dyes Extracted from Terminalia arjuna and Thespesia Populnea Fruits. Ind. Crops Prod. 2020, 148, 112303. [Google Scholar] [CrossRef]
- Zaharia, C.; Diaconu, M.; Muresan, E.I.; Danila, A.; Popescu, A.; Rosu, G. Bioactive Emulsions with Beneficial Antimicrobial Application in Textile Material Production. Cellulose 2020, 27, 9711–9723. [Google Scholar] [CrossRef]
- Ghaheh, F.S.; Nateri, A.S.; Mortazavi, S.M.; Abedi, D.; Mokhtari, J. The Effect of Mordant Salts on Antibacterial Activity of Wool Fabric Dyed with Pomegranate and Walnut Shell Extracts. Color. Technol. 2012, 128, 473–478. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organisation of the United Nations). Food Wastage Footprint Impacts on Natural Resources. Available online: https://www.fao.org/3/i3347e/i3347e.pdf (accessed on 8 November 2023).
- Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Citrus Peels Waste as a Source of Value-Added Compounds: Extraction and Quantification of Bioactive Polyphenols. Food Chem. 2019, 295, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Çam, M.; Içyer, N.C.; Erdoǧan, F. Pomegranate Peel Phenolics: Microencapsulation, Storage Stability and Potential Ingredient for Functional Food Development. LWT 2014, 55, 117–123. [Google Scholar] [CrossRef]
- AATCC TM 100; Test Method for Antibacterial Finishes on Textile Materials: Assessment of. American Association of Textile Chemists and Colorists (AATCC): Research Triangle Park, NC, USA, 2019.
- AATCC TM 90; Antimicrobial Activity Assessment of Textile Materials: Agar Plate. American Association of Textile Chemists and Colorists (AATCC): Research Triangle Park, NC, USA, 2016.
- ASTM E2149; Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions. American Society for Testing and Materials: West Conshohocken, PA, USA, 2020.
- ISO/DIS 20743; Textiles—Determination of Antibacterial Activity of Textile Products. International Organization for Standardization: Geneva, Switzerland, 2013.
- GB/T 20944.3-2008; Textiles-Evaluation for Antibacterial Activity-Part 3: Shake Flask Method. National Standard of the People’s Republic of China, China Standard Press: Beijing, China, 2008.
- AATCC TM 183; Transmittance or Blocking of Erythemally Weighted Ultraviolet Radiation through Fabrics. American Association of Textile Chemists and Colorists (AATCC): Research Triangle Park, NC, USA, 2020.
- GB/T 18830-2009; Textiles—Evaluation for Solar Ultraviolet Radiation Protective Properties. National Standard of the People’s Republic of China, China Standard Press: Beijing, China, 2009.
- AS/NZS 4399:1996; Sun Protective Clothing–Evaluation and Classification. Standards Australia International Limited: Sydney, Australia, 1996.
- EU Standard 13758-2001; Textiles—Solar UV Protective Properties—Part 1: Method of Test for Apparel Fabrics. European Standards: Pilsen, Czech Republic, 2001.
- GB/T 5454-1997; Textiles–Burning Behavior—Oxygen Index Method. National Standard of the People’s Republic of China, China Standard Press: Beijing, China, 1997.
- ASTM D2863; Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index). American Society for Testing and Materials: West Conshohocken, PA, USA, 2023.
- GB/T 5455-2014; Textile—Burning Behavior—Determination of Damaged Length, Afterglow Time and Afterflame Time of Vertically Oriented Specimens. National Standard of the People’s Republic of China, China Standard Press: Beijing, China, 2014.
- ASTM D6413; Standard Test Method for Flame Resistance of Textiles (Vertical Test). American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonso, T.B.; Bonifácio-Lopes, T.; Costa, E.M.; Pintado, M.E. Phenolic Compounds from By-Products for Functional Textiles. Materials 2023, 16, 7248. https://doi.org/10.3390/ma16227248
Afonso TB, Bonifácio-Lopes T, Costa EM, Pintado ME. Phenolic Compounds from By-Products for Functional Textiles. Materials. 2023; 16(22):7248. https://doi.org/10.3390/ma16227248
Chicago/Turabian StyleAfonso, Tiago Barros, Teresa Bonifácio-Lopes, Eduardo Manuel Costa, and Manuela Estevez Pintado. 2023. "Phenolic Compounds from By-Products for Functional Textiles" Materials 16, no. 22: 7248. https://doi.org/10.3390/ma16227248
APA StyleAfonso, T. B., Bonifácio-Lopes, T., Costa, E. M., & Pintado, M. E. (2023). Phenolic Compounds from By-Products for Functional Textiles. Materials, 16(22), 7248. https://doi.org/10.3390/ma16227248