Studies on the Cooperative Influence of Cr and Mo on the Pitting Corrosion Resistance of Super Austenitic Stainless Steels
Abstract
:1. Introduction
2. Experimental Methods
2.1. Material Preparation
2.2. Research Methods for Pitting Pits and Re-Passivation
2.2.1. Immersion Corrosion Method
2.2.2. Electrochemical Method
2.3. Methods for the Production and Electrochemical Measurement of Passive Films
2.4. Methods for Visualizing the Morphology of the Passive Film
2.5. A Research Approach to Passive Film Components
2.6. Numerical Simulation Research methodology
3. Results and Discussion
3.1. Cr and Mo Doping Influence on Pitting Corrosion Holes
3.2. The Influence on the Polarization of Cr and Mo Concentrations
3.3. Impact of Cr and Mo Concentration on the Impedance of Passive Film
3.4. Influence of Cr and Mo Concentration on the Semiconductor Behavior of Passive Films
3.5. Influence of Cr and Mo by Components and Thickness of Passive Films
3.6. Influence of Cr and Mo Doping on Passive Film Performance against NaCl Attraction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anburaj, J.; Nazirudeen, S.S.M.; Narayanan, R.; Anandavel, B.; ChandrasekarJ, A. Ageing of forged super austenitic stainless steel: Precipitate phases and mechanical properties. Mater. Sci. Eng. A 2012, 535, 99–107. [Google Scholar] [CrossRef]
- Marcus, P.; Bussell, M.E. XPS study of the passive films formed on nitrogen-implanted austenitic stainless steels. Appl. Surf. Sci. 1992, 59, 7–21. [Google Scholar] [CrossRef]
- Mori, G.; Bauernfeind, D. Pitting and crevice corrosion of superaustenitic stainless steels. Mater. Corros. 2004, 55, 164–173. [Google Scholar] [CrossRef]
- Latha, G.; Rajendran, N.; Rajeswari, S. Influence of alloying elements on the corrosion performance of alloy 33 and alloy 24 in seawater. J. Mater. Eng. Perform. 1997, 6, 743–748. [Google Scholar] [CrossRef]
- Clayton, C.R.; Lu, Y.C. A bipolar model of the passivity of stainless steel: The role of Mo addition. J. Electrochem. Soc. 1986, 133, 2465–2473. [Google Scholar] [CrossRef]
- Brooks, A.R.; Clayton, C.R.; Doss, K.; Lu, Y.C. On the role of Cr in the passivity of stainless steel. J. Electrochem. Soc. 1986, 133, 2459–2464. [Google Scholar] [CrossRef]
- Yaniv, A.E.; Lumsden, J.B.; Staehle, R.W. The composition of passive films on ferritic stainless steels. J. Electrochem. Soc. 1977, 124, 490–496. [Google Scholar] [CrossRef]
- Sugimoto, K.; Sawada, Y. The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions. Corros. Sci. 1977, 17, 425–445. [Google Scholar] [CrossRef]
- Montemor, M.F.; Simões, A.M.P.; Ferreira, M.G.S.; Da Cunha Belo, M. The role of Mo in the chemical composition and semiconductive behaviour of oxide films formed on stainless steels. Corros. Sci. 1999, 41, 17–34. [Google Scholar] [CrossRef]
- Kuczynska-Wydorska, M.; Flis-Kabulska, I.; Flis, J. Corrosion of low-temperature nitrided molybdenum-bearing stainless steels. Corros. Sci. 2011, 53, 1762–1769. [Google Scholar] [CrossRef]
- Hashimoto, K.; Asami, K.; Teramoto, K. An X-ray photo-electron spectroscopic study on the role of molybdenum in increasing the corrosion resistance of ferritic stainless steels in HCl. Corros. Sci. 1979, 19, 3–14. [Google Scholar] [CrossRef]
- Ilevbare, G.O.; Burstein, G.T. The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels. Corros. Sci. 2001, 43, 485–513. [Google Scholar] [CrossRef]
- Schneider, A.; Kuron, D.; Hofmann, S.; Kirchheim, R. AES analysis of pits and passive films formed on Fe-Cr Fe Mo and Fe Cr Mo alloys. Corros. Sci. 1990, 31, 191–196. [Google Scholar] [CrossRef]
- Ogawa, H.; Omata, H.; Itoh, I.; Okada, H. Auger electron spectroscopic and electrochemical analysis of the effect of alloying elements on the passivation behavior of stainless steels. Corrosion 1978, 34, 52–60. [Google Scholar] [CrossRef]
- Sugimoto, K.; Sawada, Y. The role of alloyed molybdenum in austenitic stainless steels in the inhibition of pitting in neutral halide solutions. Corrosion 1976, 32, 347–352. [Google Scholar] [CrossRef]
- Ha, H.Y.; Lee, T.H.; Bae, J.H.; Chun, D.W. Molybdenum effects on pitting corrosion resistance of FeCrMnMoNC austenitic stainless steels. Metals 2018, 8, 653. [Google Scholar] [CrossRef]
- Lu, Y.C.; Ives, M.B.; Clayton, C.R. Synergism of alloying elements and pitting corrosion resistance of stainless steels. Corros. Sci. 1993, 35, 89–96. [Google Scholar] [CrossRef]
- Lu, Y.C.; Clayton, C.R.; Brooks, A.R. A bipolar model of the passivity of stainless steels—II. The influence of aqueous molybdate. Corros. Sci. 1989, 29, 863–880. [Google Scholar] [CrossRef]
- Tobler, W.J.; Virtanen, S. Effect of Mo species on metastable pitting of Fe18Cr alloys—A current transient analysis. Corros. Sci. 2006, 48, 1585–1607. [Google Scholar] [CrossRef]
- Habazaki, H.; Kawashima, A.; Asami, K.; Hashimotoet, K. The corrosion behavior of amorphous Fe-Cr-Mo-PC and Fe-Cr-WPC alloys in 6 M HCl solution. Corros. Sci. 1992, 33, 225–236. [Google Scholar] [CrossRef]
- Jung, K.M.; Ahn, S.H.; Kim, Y.J.; Oh, S.; Ryu, W.H.; Kwonet, H.S. Alloy design employing high Cr concentrations for Mo-free stainless steels with enhanced corrosion resistance. Corros. Sci. 2018, 140, 61–72. [Google Scholar] [CrossRef]
- Stornelli, G.; Gaggiotti, M.; Mancini, S.; Napoli, G.; Rocchi, C.; Tirasso, C.; Di Schino, A. Recrystallization and Grain Growth of AISI 904L Super-Austenitic Stainless Steel: A Multivariate Regression Approach. Metals 2022, 12, 200. [Google Scholar] [CrossRef]
- Miranda-Pérez, A.F.; Rodríguez-Vargas, B.R.; Calliari, I.; Pezzato, L. Corrosion Resistance of GMAW Duplex Stainless Steels Welds. Materials 2023, 16, 1847. [Google Scholar] [CrossRef] [PubMed]
- Le, D.P.; Ji, W.S.; Kim, J.G.; Jeong, K.J.; Lee, S.H. Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system. Corros. Sci. 2008, 50, 1195–1204. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, X.; Li, X.; Jeong, K.J.; Lee, S.H. Effect of Cr on the passive film formation mechanism of steel rebar in saturated calcium hydroxide solution. Appl. Surf. Sci. 2016, 389, 1182–1191. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerh, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Liu, H.; Mi, Z.S.; Shi, C.M.; Qiao, L.J. Atom doping in α-Fe2O3 thin films to prevent hydrogen permeation. Int. J. Hydrogen Energy 2019, 44, 3221–3229. [Google Scholar] [CrossRef]
- Mi, Z.; Chen, L.; Shi, C.; Ma, Y.; Wang, D.; Li, X.; Liu, H.; Qiao, L. The effects of strain and vacancy defects on the electronic structure of Cr2O3. Comput. Mater. Sci. 2018, 144, 64–69. [Google Scholar] [CrossRef]
- Chen, D.; Dong, C.; Ma, Y.; Ji, Y.; Gao, L.; Li, X. Revealing the inner rules of PREN from electronic aspect by first-principles calculations. Corros. Sci. 2021, 189, 109561. [Google Scholar] [CrossRef]
- Sanville, E.; Kenny, S.D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Makov, G.; Payne, M.C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B Condens. Matter. 1995, 51, 4014–4022. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, P.; Raja, V.S.; Mukherjee, S. Effect of alloyed molybdenum on corrosion behavior of plasma immersion nitrogen ion implanted austenitic stainless steel. Corros. Sci. 2013, 74, 106–115. [Google Scholar] [CrossRef]
- Wei, X.; Dong, J.; Tong, J.; Zheng, Z.; Ke, W. The electrochemical characteristics of Cr30Mo2 ultra pure ferritic stainless steel in NaCl solutions at different temperatures. Int. J. Electrochem. Sci. 2013, 8, 887–902. [Google Scholar] [CrossRef]
- Nagarajan, S.; Karthega, M.; Rajendran, N. Pitting corrosion studies of super austenitic stainless steels in natural sea water using dynamic electrochemical impedance spectroscopy. J. Appl. Electrochem. 2007, 37, 195–201. [Google Scholar] [CrossRef]
- Yazawa, Y.; Yoshioka, K.; Togashi, F. Effects of Cr, Mo and Cu on the atmospheric corrosion resistance of ferritic stainless steels in a coastal environment. Kawasaki Steel Tech. Rep. 1994, 31, 35–43. [Google Scholar]
- Fernández-Domene, R.M.; Blasco-Tamarit, E.; García-García, D.M.; García-Antónet, J. Passive and transpassive behaviour of Alloy 31 in a heavy brine LiBr solution. Electrochim. Acta. 2013, 95, 1–11. [Google Scholar] [CrossRef]
- Vidal, C.V.; Igual Muñoz, A. Study of the adsorption process of bovine serum albumin on passivated surfaces of CoCrMo biomedical alloy. Electrochim. Acta 2010, 55, 8445–8452. [Google Scholar] [CrossRef]
- Growcock, F.B.; Jasinski, R.J. Time-resolved impedance spectroscopy of mild steel in concentrated hydrochloric acid. J. Electrochem. Soc. 1989, 136, 2310–2314. [Google Scholar] [CrossRef]
- Fredriksson, W.; Petrini, D.; Edström, K.; Björefors, F.; Nyholm, L. Corrosion resistances and passivation of powder metallurgical and conventionally cast 316L and 2205 stainless steels. Corros. Sci. 2013, 67, 268–280. [Google Scholar] [CrossRef]
- Li, B.B.; Qu, H.P.; Lang, Y.P.; Feng, H.Q.; Chen, Q.M.; Chen, H.T. Copper alloying content effect on pitting resistance of modified 00Cr20Ni18Mo6CuN super austenitic stainless steels. Corros. Sci. 2020, 173, 108791. [Google Scholar] [CrossRef]
- Wang, L.; Dong, C.; Yao, J.; Dai, Z.; Man, C.; Yin, L.; Xiao, K.; Li, X. The effect of ɳ-Ni3Ti precipitates and reversed austenite on the passive film stability of nickel-rich Custom 465 steel. Corros. Sci. 2019, 154, 178–190. [Google Scholar] [CrossRef]
- Mohammadi, F.; Nickchi, T.; Attar, M.M.; Alfantazi, A. EIS study of potentiostatically formed passive film on 304 stainless steel. Electrochim. Acta 2011, 56, 8727–8733. [Google Scholar] [CrossRef]
- Gui, Y.; Zheng, Z.J.; Gao, Y. The bi-layer structure and the higher compactness of a passive film on nanocrystalline 304 stainless steel. Thin Solid Films 2016, 599, 64–71. [Google Scholar] [CrossRef]
- Sarlak, H.; Atapour, M.; Esmailzadeh, M. Corrosion behavior of friction stir welded lean duplex stainless steel. Mater. Des. 2015, 66, 209–216. [Google Scholar] [CrossRef]
- Qiao, Y.X.; Zheng, Y.G.; Ke, W.; Okafor, P.C. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions. Corros. Sci. 2009, 51, 979–986. [Google Scholar] [CrossRef]
- Olsson, C.; Landolt, D. Passive films on stainless steels—Chemistry, structure and growth. Electrochim. Acta. 2003, 48, 1093–1104. [Google Scholar] [CrossRef]
- Kong, D.S.; Chen, S.H.; Wang, C.; Yang, W. A study of the passive films on chromium by capacitance measurement. Corros. Sci. 2003, 45, 747–758. [Google Scholar] [CrossRef]
- Hakiki, N.E.; Belo, M.D.C.; Simoes, A.M.P. Semiconducting properties of passive films formed on stainless steels: Influence of the alloying elements. J. Electrochem. Soc. 1998, 145, 3821–3829. [Google Scholar] [CrossRef]
- Jeon, S.H.; Kim, H.J.; Kong, K.H.; Park, Y.S. Effects of copper addition on the passivity and corrosion behavior of 27Cr-7Ni hyper duplex stainless steels in sulfuric acid solution. Mater. Trans. 2015, 56, 78–84. [Google Scholar] [CrossRef]
- Qu, H.P.; Chen, H.T.; Lang, Y.P. Influence of Mn-Ni alloying elements on surface film and pitting resistance of Cr-Mn austenitic stainless steels. Constr. Build. Mater. 2016, 125, 427–437. [Google Scholar] [CrossRef]
- Olefjord, I.; Brox, B.; Jelvestam, U. Surface composition of stainless steels during anodic dissolution and passivation studied by ESCA. J. Electrochem. Soc. 1985, 132, 2854–2861. [Google Scholar] [CrossRef]
- Stypula, B.; Stoch, J. The characterization of passive films on chromium electrodes by XPS. Corros. Sci. 1994, 36, 2159–2167. [Google Scholar] [CrossRef]
- Upadhyay, N.; Pujar, M.G.; Singh, S.S.; Krishnaet, N.G.; Mallika, C.; Kamachi Mudali, U. Evaluation of the effect of molybdenum on the pitting corrosion behavior of austenitic stainless steels using electrochemical noise technique. Corrosion 2017, 73, 1320–1334. [Google Scholar] [CrossRef] [PubMed]
- Freire, L.; Catarino, M.A.; .Godinho, M.I.; Ferreira, M.J.; Ferreira, M.G.S.; Simões, A.M.P.; Montemor, M.F. Electrochemical and analytical investigation of passive films formed on stainless steels in alkaline media. Cem. Concr. Compos. 2012, 34, 1075–1081. [Google Scholar] [CrossRef]
- Sun, H.; Wu, X.Q.; Han, E.H. Effects of temperature on the oxide film properties of 304 stainless steel in high temperature lithium borate buffer solution. Corros. Sci. 2009, 51, 2840–2847. [Google Scholar] [CrossRef]
- Ziemniak, S.E.; Jones, M.E.; Combs, K.E.S. Solubility and phase behavior of Cr(III) oxides in alkaline media at elevated temperatures. J. Solut. Chem. 1998, 27, 33–66. [Google Scholar] [CrossRef]
- Maurice, V.; Yang, W.P.; Marcus, P. X-Ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe-18Cr-13Ni single-crystal surfaces. J. Electrochem Soc. 1998, 145, 909–920. [Google Scholar] [CrossRef]
- Chen, L.; Shi, C.M.; Li, X.L.; Mi, Z.S.; Jiang, C.; Oiao, L.J.; Volinsky, A.A. Passivation of hydrogen damage using graphene coating on α-Fe2O3 films. Carbon 2018, 130, 19–24. [Google Scholar] [CrossRef]
- Liu, M.; Jin, Y.; Zhang, C.; Leygraf, C.; Wen, L. Density-functional theory investigation of Al pitting corrosion in electrolyte containing chloride ions. Appl. Surf. Sci. 2015, 357, 2028–2038. [Google Scholar] [CrossRef]
NO. | C | Si | Mn | Ni | Cr | Mo | N | Fe | PREN |
---|---|---|---|---|---|---|---|---|---|
Cr2Mo1 | 0.0067 | 0.35 | 0.41 | 24.37 | 27.96 | 4.02 | 0.29 | Bal. | 45.87 |
Cr1Mo1 | 0.0063 | 0.33 | 0.39 | 24.32 | 24.69 | 5.01 | 0.30 | Bal. | 46.02 |
Cr1Mo2 | 0.0065 | 0.31 | 0.42 | 24.45 | 21.45 | 6.02 | 0.29 | Bal. | 45.96 |
NO. | Rs/Ω·cm2 | Q/×10−6 Ω−1·cm−2·sn | n | R/106 Ω·cm2 | C/×10−6 F·cm−2 | χ2/×10−4 |
---|---|---|---|---|---|---|
Cr2Mo1 | 2.586 | 3.749 | 0.9418 | 6.138 | 4.551 | 8.497 |
Cr1Mo1 | 2.647 | 3.297 | 0.9498 | 7.702 | 3.912 | 6.552 |
Cr1Mo2 | 2.667 | 2.764 | 0.9579 | 9.982 | 3.198 | 1.618 |
NO. | Acceptor Density, NA × 10−20/cm−3 | EFB-p /VSCE | Donor Density, ND × 10−20/cm−3 | EFB-n /VSCE |
---|---|---|---|---|
Cr2Mo1 | 5.238906 | 0.41294 | 2.090764 | −0.09251 |
Cr1Mo1 | 3.941489 | 0.21721 | 1.715653 | −0.03904 |
Cr1Mo2 | 3.313983 | 0.13984 | 1.419965 | 0.00957 |
NO. | Position 1 /nm | Position 2 /nm | Position 3 /nm | Position 4 /nm | Position 5 /nm | Average Value /nm |
---|---|---|---|---|---|---|
Cr1Mo2 | 6.33 | 6.15 | 6.51 | 6.69 | 6.35 | 6.41 |
Cr2Mo1 | 8.69 | 8.98 | 9.67 | 9.86 | 9.45 | 9.33 |
Cr1Mo1 | 10.21 | 10.85 | 10.82 | 10.52 | 9.52 | 10.38 |
Cr1Mo2 | 11.51 | 14.81 | 13.73 | 12.94 | 11.12 | 12.82 |
Element | Valence state | Binding energy/eV |
---|---|---|
Cr | Crmet | 574.0 ± 0.1 |
CrO42− | 578.3 ± 0.1 | |
Cr(OH)3 | 577.3 ± 0.1 | |
Cr2O3 | 576.4 ± 0.1 | |
Fe | Femet | 707.1 ± 0.1 |
FeOOH | 711.7 ± 0.1 | |
Fe2O3 | 710.4 ± 0.1 | |
FeO | 709.5 ± 0.1 | |
Fe3O4 | 708.2 ± 0.1 | |
Mo | (Momet): Mo3d5/2, Mo3d3/2 | 228.0 ± 0.1, 230.9 ± 0.1 |
MoO2: Mo3d5/2, Mo3d3/2 | 231.0 ± 0.1, 234.2 ± 0.1 | |
MoO42−: Mo3d5/2, Mo3d3/2 | 232.3 ± 0.1, 235.7 ± 0.1 |
Models | Adsorption Site | Eads/kJ mol−1 | Bond Distance/Å | W/eV | Δd/Å | ΔQ/e |
---|---|---|---|---|---|---|
Fe2O3 | Fe | −82.79196 | 2.28692 | 4.19675 | 0.01537 | 0.16721 |
1Cr | Cr | −55.33232 | 2.31747 | 4.23462 | 0.01329 | 0.14364 |
Fe | −80.85261 | 2.28793 | 0.01511 | 0.16583 | ||
1Mo | Mo | −73.19845 | 2.40037 | 4.25422 | 0.00749 | 0.17546 |
Fe | −62.84754 | 2.30214 | 0.01394 | 0.15267 | ||
1Cr1Mo | Cr | −41.02553 | 2.37406 | 4.39159 | 0.01214 | 0.11063 |
Mo | −65.37545 | 2.40702 | 0.00747 | 0.1747 | ||
Fe | −56.41266 | 2.31104 | 0.01355 | 0.14614 | ||
2Cr1Mo | Cr | −39.24731 | 2.38359 | 4.46942 | 0.01209 | 0.10589 |
Mo | −57.56595 | 2.40955 | 0.00737 | 0.17381 | ||
Fe | −51.24136 | 2.32304 | 0.01281 | 0.14177 | ||
1Cr2Mo | Cr | −35.0946 | 2.39966 | 4.54936 | 0.01152 | 0.09327 |
Mo | −46.09967 | 2.41147 | 0.00674 | 0.17169 | ||
Fe | −43.21863 | 2.36328 | 0.01229 | 0.12877 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Lang, Y.; Chen, H.; Qu, H.; Feng, H.; Sun, X.; Tian, Z. Studies on the Cooperative Influence of Cr and Mo on the Pitting Corrosion Resistance of Super Austenitic Stainless Steels. Materials 2023, 16, 7397. https://doi.org/10.3390/ma16237397
Li B, Lang Y, Chen H, Qu H, Feng H, Sun X, Tian Z. Studies on the Cooperative Influence of Cr and Mo on the Pitting Corrosion Resistance of Super Austenitic Stainless Steels. Materials. 2023; 16(23):7397. https://doi.org/10.3390/ma16237397
Chicago/Turabian StyleLi, Bingbing, Yuping Lang, Haitao Chen, Huapeng Qu, Hanqiu Feng, Xu Sun, and Zhiling Tian. 2023. "Studies on the Cooperative Influence of Cr and Mo on the Pitting Corrosion Resistance of Super Austenitic Stainless Steels" Materials 16, no. 23: 7397. https://doi.org/10.3390/ma16237397
APA StyleLi, B., Lang, Y., Chen, H., Qu, H., Feng, H., Sun, X., & Tian, Z. (2023). Studies on the Cooperative Influence of Cr and Mo on the Pitting Corrosion Resistance of Super Austenitic Stainless Steels. Materials, 16(23), 7397. https://doi.org/10.3390/ma16237397