The Influence of Single-Walled Carbon Nanotubes on the Aging Performance of Polymer-Modified Binders
Abstract
:1. Introduction
1.1. The Aging Process in Bitumen
1.2. The Aging Process in Polymer-Modified Binders
2. Materials and Methods
2.1. Raw Materials and Characterization
2.2. Methods for the Preparation of Polymer-Nanomodified Binder (PNMB)
2.3. Characterization of Polymer-Nanomodified Binder
2.4. Study of the Short-Term Aging Process of Polymer-Nanomodified Binder: High-Temperature Characteristics
2.5. Study of the Long-Term Aging Process of Polymer-Nanomodified Binder: Low-Temperature and Fatigue and Characteristics
2.6. Study of the Microstructural Changes in Polymer-Nanomodified Binder
2.7. Study of the Relaxation Processes of Polymer-Nanomodified Binder
3. Results and Discussion
3.1. Study of the Short-Term Aging Process of Polymer-Nanomodified Binder: High-Temperature Characteristics
3.2. Study of the Long-Term Aging Process of Polymer-Nanomodified Binder: Low-Temperature and Fatigue and Characteristics
3.3. Study of the Microstructural Changes in Polymer-Nanomodified Binder
3.4. Study of the Relaxation Processes of Polymer-Nanomodified Binder
4. Conclusions
- (1)
- The introduction of single-walled carbon nanotubes into a polymer-modified binder increased the viscosity of the system. The increase in viscosity is explained by a decrease in the penetrating ability of bitumen due to the structuring of the system with carbon nanotubes. However, the entire viscosity of the PMB modified by carbon nanotubes meets the requirements of Superpave specifications ≤ 3 Pa·s, which does not require technological changes in the preparation of asphalt–concrete mixture.
- (2)
- The distribution of SWCNT is uniform. The dynamic viscosity of the samples taken from the upper and the lower parts differs by not more than 1%.
- (3)
- The test results of PMB modified by single-walled carbon nanotubes with any amount of added modifier showed improved characteristics of track formation and fatigue resistance compared to basic PMB. However, the recommended amount of SWCNT is 0.001%, SBS polymer is 3.5%, and waste industrial oil is 4% by mass of bitumen to ensure fatigue resistance, which improves the performance of the modified binder from PG (52-22) to PG (64-34).
- (4)
- According to infrared spectral analysis, the composition of PNMB No. 5 has less intensive changes in peak absorption, which leads to the conclusion that the introduction of single-walled carbon nanotubes in a polymer-modified binder will contribute to the formation of a more stable structure.
- (5)
- It has been established that the use of single-walled carbon nanotubes slows the operational (long-term) aging process of polymer-modified binders and increases the durability parameter ∆Tc by 150%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loos, M. Carbon Nanotube Reinforced Composites: CNT Polymer Science and Technology; William Andrew: Norwich, NY, USA, 2014; p. 304. [Google Scholar]
- Chen, J.S.; Wang, T.J.; Lee, C.T. Evaluation of a highly modified asphalt binder for field performance. Constr. Build. Mater. 2018, 171, 539–545. [Google Scholar] [CrossRef]
- Mandal, T.; Sylla, R.; Bahia, H.U.; Barmand, S. Effectof cross-linking agents on the rheological properties of polymer-modified bitumen. Road Mater. Pavement Des. 2014, 16, 349–361. [Google Scholar] [CrossRef]
- Hernando, D.; Couscheir, K.; Jacobs, G.; Almalehy, H.; Omranian, S.R.; Vuye, C.; Braspenninckx, J.; Van den Bergh, W. A comparative study on the performance of field-sampled asphalt mixtures for heavy-duty pavements using laboratory testing and mechanistic-empirical simulations. Road Mater. Pavement Des. 2023, 24, 554–573. [Google Scholar] [CrossRef]
- Shekhovtsova, S.Y.; Korolev, E.V. Formation of polymer modified binder structure in the presence of carbon nanomaterials. Constr. Build. Mater. 2021, 303, 124591. [Google Scholar] [CrossRef]
- Ishaq, M.A.; Giustozzi, F. Effect of polymers and micro fibres on the thermo-chemical and rheological properties of polymer modified binders. Aust. J. Civ. Eng. 2023, 21, 34–49. [Google Scholar] [CrossRef]
- Burkov, M.V.; Eremin, A.V. Mechanical properties of carbon-fiber-reinforced epoxy composites modified by carbon micro- and nanofillers. Polym. Compos. 2021, 42, 4265–4276. [Google Scholar] [CrossRef]
- Arifuzzaman, M. Polymer nanocomposites for road construction: Investigating the aging performance of polymer and carbon nanotube–modified asphalt binder. In Advanced Polymer Nanocomposites; Woodhead Publishing: Thorston, UK, 2022; pp. 319–334. [Google Scholar] [CrossRef]
- Hofko, B.; Eberhardsteiner, L.; Fussl, J.; Grothe, H. Impact of maltene and asphaltene fraction on mechanical behavior and microstructure of bitumen. Mater. Struct. 2016, 49, 829–841. [Google Scholar] [CrossRef]
- Semenov, N.N. Chemical Kinetics and Chain Reactions; Clarendon Press: Oxford, UK, 1935. [Google Scholar]
- Eberhardsteiner, L.; Fussl, J.; Hofko, B.; Handle, F.; Hospodka, M.; Blab, R.; Grothe, H. Influence of asphaltene content on mechanical bitumen behavior: Experimental investigation and micromechanical modeling. Mater. Struct. 2015, 48, 3099–3112. [Google Scholar] [CrossRef]
- Handle, F.; Fussl, J.; Neudl, S.; Grossegger, D.; Eberhardsteiner, L.; Hofko, B.; Grothe, H. The bitumen microstructure: A fluorescent approach. Mater. Struct. 2016, 49, 167–180. [Google Scholar] [CrossRef]
- Xu, X.; Haoyan, G.; Xiaofeng, W.; Mingxiang, Z.; Zhenjun, W.; Bo, Y. Physical properties and anti-aging characteristics of asphalt modified with nano-zinc oxide powder. Constr. Build. Mater. 2019, 224, 732–742. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Luo, R.; Bian, G.; Liang, Q.; Yan, F. Changes of components and rheological properties of bitumen under dynamic thermal aging. Constr. Build. Mater. 2021, 303, 124501. [Google Scholar] [CrossRef]
- Traxler, R.N.; Coombs, C.E. The Colloidal Nature of Asphalt as Shown by its Flow Properties. J. Phys. Chem. 1936, 40, 1133–1147. [Google Scholar] [CrossRef]
- Gusfeldt, K.H.; Scott, J. Factors governing adhesion in bituminous mixes. Dtsch. Shell AG 1975, 1, 49–65. [Google Scholar]
- Liu, H.; Hao, P.; Wang, H.; Adhikari, S. Effects of Physio-Chemical Factors on Asphalt Aging Behavior. J. Mater. Civ. Eng. 2014, 26, 190–197. [Google Scholar] [CrossRef]
- Diab, A.; Enieb, M.; Singh, D. Influence of aging on properties of polymer-modified asphalt. Constr. Build. Mater. 2019, 196, 54–65. [Google Scholar] [CrossRef]
- Tang, N.; Huang, W.; Hao, G. Effect of aging on morphology, rheology, and chemical properties of highly polymer modified asphalt binders. Constr. Build. Mater. 2021, 281, 122595. [Google Scholar] [CrossRef]
- Joohari, J.B.; Maniam, S.; Giustozzi, F. Effect of Long-Term Aging on Polymer Degradation and Fatigue Resistance of Hybrid Polymer-Modified Bitumen. J. Mater. Civ. Eng. 2022, 34, 04022286. [Google Scholar] [CrossRef]
- Xu, S.; Fan, Y.; Feng, Z.; Ke, Y.; Zhang, C.; Huang, H. Comparison of quantitative determination for SBS content in SBS modified asphalt. Constr. Build. Mater. 2021, 282, 122733. [Google Scholar] [CrossRef]
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef]
- Ragni, D.; Ferrotti, G.; Lu, X.; Canestrari, F. Effect of temperature and chemical additives on the short-term ageing of polymer modified bitumen for WMA. Mater. Des. 2018, 160, 514–526. [Google Scholar] [CrossRef]
- Mirwald, J.; Werkovits, S.; Camargo, I.; Maschauer, D.; Hofko, B.; Grothe, H. Investigating bitumen long-term-ageing in the laboratory by spectroscopic analysis of the SARA fractions. Constr. Build. Mater. 2020, 258, 119577. [Google Scholar] [CrossRef]
- Lyne, Å.L.; Wallqvist, V.; Birgisson, B. Adhesive surface characteristics of bitumen binders investigated by Atomic Force Microscopy. Fuel 2013, 113, 248–256. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, H.; Liu, X.; Duan, H. A novel method for determining the time-temperature superposition relationship of SBS modified bitumen: Effects of bitumen source, modifier type and aging. Constr. Build. Mater. 2021, 280, 122549. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, A.; Zhou, T.; Cao, X.; Xie, Z. A study on thermal oxidation mechanism of styrene–butadiene–styrene block copolymer (SBS). Polym. Degrad. Stab. 2007, 92, 1682–1691. [Google Scholar] [CrossRef]
- Wei, H.; Bai, X.; Qian, G.; Wang, F.; Li, Z.; Jin, J.; Zhang, Y. Aging Mechanism and Properties of SBS Modified Bitumen under Complex Environmental Conditions. Materials 2019, 12, 1189. [Google Scholar] [CrossRef] [PubMed]
- Desidery, L.; Lanotte, M. Identification of undisclosed modifiers and their effects on chemical, thermal, and microstructural properties of unaged and aged industrial high polymer-modified asphalt binders. Constr. Build. Mater. 2023, 389, 131763. [Google Scholar] [CrossRef]
- Shekhovtsova, S.Y.; Korolev, E.V. Nanomodified rejuvenators and protective materials for asphalt concrete. Mag. Civ. Eng. 2021, 106, 10607. [Google Scholar]
- Yang, S.; Bieliatynskyi, A.; Trachevskyi, V.; Shao, M.; Ta, M. Technology for improving modern polymer composite materials. Mater. Sci.-Pol. 2022, 40, 27–41.
- Nazki, M.A.; Chopra, T.; Chandrappa, A.K. Rheological properties and thermal conductivity of bitumen binders modified with graphene. Constr. Build. Mater. 2020, 238, 117693. [Google Scholar] [CrossRef]
- Strozzi, M.; Smirnov, V.V.; Pellicano, F.; Kovaleva, M. Nonlocal anisotropic elastic shell model for vibrations of double-walled carbon nanotubes under nonlinear van der Waals interaction forces. Int. J. Non-Linear Mech. 2022, 146, 104172. [Google Scholar] [CrossRef]
- Ghavanloo, E.; Fazelzadeh, S.A. Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect. Appl. Math. Model. 2012, 36, 4988–5000. [Google Scholar] [CrossRef]
- Strozzi, M.; Elishakoff, I.E.; Bochicchio, M.; Cocconcelli, M.; Rubini, R.; Radi, E. A Comparison of Shell Theories for Vibration Analysis of Single-Walled Carbon Nanotubes Based on an Anisotropic Elastic Shell Model. Nanomaterials 2023, 13, 1390. [Google Scholar] [CrossRef] [PubMed]
- Fazelzadeh, S.A.; Ghavanloo, E. Nonlocal anisotropic elastic shell model for vibrations of single-walled carbon nanotubes with arbitrary chirality. Compos. Struct. 2012, 94, 1016–1022. [Google Scholar] [CrossRef]
- Wen, G.; Zhang, Y.; Zhang, Y.; Sun, K.; Fan, Y. Rheological characterization of storage-stable SBS-modified asphalts. Polym. Test. 2002, 21, 295–302. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, J.; Han, J. Effects of thermal oxidative ageing on dynamic viscosity, TG/DTG, DTA and FTIR of SBS- and SBS/sulfur-modified asphalts. Constr. Build. Mater. 2011, 25, 129–137. [Google Scholar] [CrossRef]
- Sandberg, U. Low noise road surfaces—State-of-the-art review. J. Acoust. Soc. Jpn. E 1999, 20, 1–17. [Google Scholar] [CrossRef]
- Glyadova, S.V.; Ryabkov, A.G.; Maslov, I.A.; Don, A.K. Method for Producing Single-Walled Carbon Nanotubes. Patent RF No. 2465198 2010. [Google Scholar]
- Russian State Standard 20799-88; Industrial OILS. Specifications: Moscow, Russia, 1990.
- IS 38.40327-98; Styrene Butadiene Thermoplastics DST-R. DST-RM: Voronezh, Russia, 2001.
- Russian State Standard 58400.1-2019; Automobile Roads of General Use. Petroleum-Based Bitumen Binder. Specifications Based on Operational Temperature Range: Moscow, Russia, 2019.
- AASHTO M 320; Standard Specification for Performance-Graded Asphalt Binder. AASHTO: Washington, DC, USA, 2023.
- AASHTO T 315; Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). AASHTO: Washington, DC, USA, 2020.
- AASHTO R 29; Standard Practice for Grading or Verifying the Performance Grade (PG) of an Asphalt Binder. AASHTO: Washington, DC, USA, 2015.
- AASHTO T-350; Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). AASHTO: Washington, DC, USA, 2019.
- Pechenyi, B.G.; Kurbatov, V.L.; Losev, V.P. On the mechanism of bitumen aging and methods of their testing. Univ. Sci. 2019, 2, 28–32. [Google Scholar]
- Anderson, R.M.; King, G.N.; Hanson, D.I.; Blankenship, P.B. Evaluation of the Relationship between Asphalt Binder Properties and Non-Load Related Cracking. J. Assoc. Asph. Paving Technol. 2011, 80, 615–664. [Google Scholar]
- Shu, B.; Wu, S.; Pang, L.; Javilla, B. The Utilization of Multiple-Walled Carbon Nanotubes in Polymer Modified Bitumen. Materials 2017, 10, 416. [Google Scholar] [CrossRef]
- Cui, W.; Huang, W.; Hassan, H.M.Z.; Cai, X.; Wu, K. Study on the interfacial contact behavior of carbon nanotubes and asphalt binders and adhesion energy of modified asphalt on aggregate surface by using molecular dynamics simulation. Constr. Build. Mater. 2022, 316, 125849. [Google Scholar] [CrossRef]
Properties | Requirements of Russian State Standard 20799-88 | Actual Value |
---|---|---|
Kinematic viscosity at 40 °C, mm2/s | 61–75 | 75 |
Acid number, mg KOH per 1 g of oil | <0.05 | 0.035 |
Ash content, % | <0.005 | 0.004 |
Mass fraction of sulfur in oils from sulfurous oils, % | <1.1 | 0.9 |
Density at 20 °C, kg/m3 | <900 | 890 |
Flashpoint, °C | ≥220 | 242 |
Stability against oxidation: | ||
increment of acid number of oxidized oil, mg KOH per 1 g of oil | <0.40 | 0.35 |
increment of resin, % | <3.0 | 2.6 |
Solvent content in selective cleaning oils | non | non |
Properties | Actual Value | Method |
---|---|---|
Toluene solution viscosity 5.23%/25 °C, cSt | 14 ± 5 | ASTM D 445 |
Volatile matter, %m | ≤0.8 | ASTM D 5668 |
Ash content, %m | ≤0.3 | ASTM D 5667 |
Content of bound styrene, %m, | 30 ± 1.5 | Internal method of supplier |
Melt flow index, 200 °C/5 kg, g/10 min | <1 | ASTM D 1238 |
Flashpoint, °C | ≥220 | 237 |
Tensile strength, MPa | 15 | ASTM D 3182 |
Tensile stress at 300% elongation, MPa | 2.7 | ASTM D 3182 |
Relative elongation at break, % | 700 | ASTM D 3182 |
Name of Parameter | Requirements of Russian State Standard 58400.1-2019 | Actual Value |
---|---|---|
Originally bitumen | ||
Flashpoint, °C | ≥230 | 249 |
Dynamic viscosity, test temperature 135 °C | ≤3 Pa s | 0.83 |
Dynamic shear: G*/sin δ at 10 rad/s, at test temperature 52 °C | ≥1 kPa | 2.03 |
Bitumen aging by RTFOT | ||
Dynamic shear: G*/sin δ at 10 rad/s, at test temperature 52 °C | ≥2.2 kPa | 2.93 |
Bitumen aging by PAV | ||
Aging temperature by PAV, °C | 90 | 90 |
Fatigue resistance: G*·sin δ at 10 rad/s, at test temperature 19 °C | ≤5000 kPa | 546 |
Low-temperature stability: Stiffness, S, at −12 °C | ≤300 MPa | 154 |
Low-temperature stability: Creep, m, at −12 °C | ≥0.300 | 0.311 |
NMPB Number | Components of Polymer-Nanomodified Binder, % | Homogeneity of PNMB | |||
---|---|---|---|---|---|
Bitumen PG 52-16 | Waste Industrial Oil | SBS 30L 01 | SWCNT | ||
1 | 100.0 | 4.0 | 2.5 | - | yes |
2 | 100.0 | 4.0 | 2.5 | 0.001 | yes |
3 | 100.0 | 4.0 | 2.5 | 0.005 | yes |
4 | 100.0 | 4.0 | 3.5 | - | yes |
5 | 100.0 | 4.0 | 3.5 | 0.001 | yes |
6 | 100.0 | 4.0 | 3.5 | 0.005 | yes |
7 | 100.0 | 4.0 | 4.5 | - | yes |
8 | 100.0 | 4.0 | 4.5 | 0.001 | yes |
9 | 100.0 | 4.0 | 4.5 | 0.005 | yes |
10 | 100.0 | 4.0 | 5.5 | - | no |
11 | 100.0 | 4.0 | 5.5 | 0.001 | no |
12 | 100.0 | 4.0 | 5.5 | 0.005 | no |
PNMB Number | Requirements of ASTM D6373 | Actual Value |
---|---|---|
1 | ≤3 Pa s | 0.99/- |
2 | ≤3 Pa s | 1.23/1.22 |
3 | ≤3 Pa s | 1.27/1.27 |
4 | ≤3 Pa s | 1.07/- |
5 | ≤3 Pa s | 1.57/1.57 |
6 | ≤3 Pa s | 1.59/1.59 |
7 | ≤3 Pa s | 1.09/- |
8 | ≤3 Pa s | 1.58/1.59 |
9 | ≤3 Pa s | 1.59/1.60 |
Name of Parameter | Russian State Standard 58400.1-2019 (PG 64-34) | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 | No. 8 | No. 9 |
---|---|---|---|---|---|---|---|---|---|---|
Originally bitumen | ||||||||||
Dynamic shear: G*/sin δ at 10 rad/s, at test temperature 64 °C | ≥1 kPa | 4.3 | 4.5 | 4.6 | 5.5 | 6.5 | 6.7 | 5.9 | 6.5 | 6.8 |
Continuous Grading Temperature, (PG X1) °C | - | 58 | 62 | 63 | 64 | 68.7 | 68.9 | 66 | 69.1 | 69.1 |
Bitumen aging by RTFOT | ||||||||||
Dynamic shear: | ||||||||||
G*/sin δ at 10 rad/s, at test temperature 64 °C | ≥2.2 kPa | 4.9 | 4.7 | 4.8 | 5.9 | 6.6 | 6.8 | 6.3 | 6.6 | 6.8 |
Continuous Grading Temperature, (PG X2) °C | - | 60.2 | 65.2 | 65.0 | 65.4 | 68.9 | 68.9 | 68.2 | 69.3 | 69.3 |
Bitumen aging by PAV | ||||||||||
Aging temperature by PAV, °C | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Fatigue resistance: G*·sin δ at 10 rad/s, at test temperature 19 °C | ≤5000 kPa | 660 | 795 | 799 | 875 | 1290 | 1270 | 905 | 1260 | 1295 |
Low-temperature stability: Stiffness, S, at −24 °C | ≤300 MPa | 150 | 162 | 165 | 205 | 218 | 220 | 211 | 223 | 225 |
Low-temperature stability: Creep, m value, at −24 °C | ≥0.300 | 0.355 | 0.357 | 0.358 | 0.325 | 0.357 | 0.358 | 0.314 | 0.323 | 0.328 |
Continuous Grading Temperature, (PG Y) °C | - | −28.4 | −30.1 | −31 | −34 | −37 | −37.4 | −35.3 | −37.5 | −37.6 |
PNMB | Jnr (kPa−1) | R (%) | |||
---|---|---|---|---|---|
0.1 kPa | 3.2 kPa | Jnr % Diff | 0.1 kPa | 3.2 kPa | |
No. 4 | 3.247 | 3.635 | 9.5 | 0.60 | 0.26 |
No. 5 | 1.289 | 1.388 | 9.90 | 2.90 | 0.90 |
No. 6 | 1.275 | 1.384 | 10.20 | 2.90 | 0.90 |
No. 7 | 2.738 | 2.914 | 7.40 | 1.30 | 0.45 |
No. 8 | 1.265 | 1.384 | 10.20 | 2.97 | 0.96 |
No. 9 | 1.265 | 1.384 | 10.20 | 2.97 | 0.96 |
NMPB Number | Parameters of Evaluation of Relaxation Processes of PNMB | ||
---|---|---|---|
Tc(s) | Tc(m) | ∆Tc | |
No. 1 | −30.0 | −28.4 | −2.1 |
No. 2 * | −32.0 | −30.2 | −1.8 |
No. 3 ** | −32.6 | −31.0 | −1.6 |
No. 4 | −34.5 | −34.0 | −0.5 |
No. 5 * | −36.5 | −37.0 | 0.5 |
No. 6 ** | −36.9 | −37.4 | 0.5 |
No. 7 | −35.7 | −35.3 | −0.4 |
No. 8 * | 37.0 | −37.5 | 0.5 |
No. 9 ** | 37.1 | −37.6 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obukhova, S.; Korolev, E.; Gladkikh, V. The Influence of Single-Walled Carbon Nanotubes on the Aging Performance of Polymer-Modified Binders. Materials 2023, 16, 7534. https://doi.org/10.3390/ma16247534
Obukhova S, Korolev E, Gladkikh V. The Influence of Single-Walled Carbon Nanotubes on the Aging Performance of Polymer-Modified Binders. Materials. 2023; 16(24):7534. https://doi.org/10.3390/ma16247534
Chicago/Turabian StyleObukhova, Svetlana, Evgeniy Korolev, and Vitaliy Gladkikh. 2023. "The Influence of Single-Walled Carbon Nanotubes on the Aging Performance of Polymer-Modified Binders" Materials 16, no. 24: 7534. https://doi.org/10.3390/ma16247534
APA StyleObukhova, S., Korolev, E., & Gladkikh, V. (2023). The Influence of Single-Walled Carbon Nanotubes on the Aging Performance of Polymer-Modified Binders. Materials, 16(24), 7534. https://doi.org/10.3390/ma16247534