Adsorption Behavior of Organoarsenicals over MnFe2O4-Graphene Hybrid Nanocomposite: The Role of Organoarsenic Chemical Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of MnFe2O4/rGO Hybrid Nanocomposite
2.3. Characterization
2.4. Adsorption Study
3. Results and Discussion
3.1. Properties of MnFe2O4/rGO Hybrid Nanocomposite
3.2. Adsorption Kinetic and Isotherms
3.3. Effect of pH and Ionic Strength
3.4. Effect of Background Anions
3.5. Effect of HA
3.6. Adsorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nabi, A.; Naeem, M.; Aftab, T.; Khan, M.M.A.; Ahmad, P. A comprehensive review of adaptations in plants under arsenic toxicity: Physiological, metabolic and molecular interventions. Environ. Pollut. 2021, 290, 118029. [Google Scholar] [CrossRef] [PubMed]
- Kalami, S.; Diakina, E.; Noorbakhsh, R.; Sheidaei, S.; Rezania, S.; Vasseghian, Y.; Kamyab, H.; Mohammadi, A.A. Metformin-modified polyethersulfone magnetic microbeads for effective arsenic removal from apatite soil leachate water. Environ. Res. 2024, 241, 117627. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, W.H.; Klein, E.M.; Vengosh, A. The Global Biogeochemical Cycle of Arsenic. Glob. Biogeochem. Cycles 2022, 36, e2022GB007515. [Google Scholar] [CrossRef]
- Jackson, B.P.; Bertsch, P.M. Determination of Arsenic Speciation in Poultry Wastes by IC-ICP-MS. Environ. Sci. Technol. 2001, 35, 4868–4873. [Google Scholar] [CrossRef] [PubMed]
- Tyutereva, Y.E.; Sherin, P.S.; Polyakova, E.V.; Grivin, V.P.; Plyusnin, V.F.; Shuvaeva, O.V.; Xu, J.; Wu, F.; Pozdnyakov, I.P. Synergetic effect of potassium persulfate on photodegradation of para-arsanilic acid in Fe(III) oxalate system. J. Photochem. Photobiol. A Chem. 2021, 420, 113507. [Google Scholar] [CrossRef]
- Polyakova, E.V.; Shuvaeva, O.V.; Koshcheeva, O.S.; Tyutereva, Y.E.; Pozdnyakov, I.P. Capillary zone electrophoresis as a simple approach for the study of p-arsanilic acid transformation in the process of photolytic degradation. Electrophoresis 2021, 42, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Wang, J.; Yin, D.; Li, M.; Chen, X.; Juhasz, A.L.; Luo, J.; Navas-Acien, A.; Li, H.; Ma, L.Q. Arsanilic acid contributes more to total arsenic than roxarsone in chicken meat from Chinese markets. J. Hazard. Mater. 2020, 383, 121178. [Google Scholar] [CrossRef]
- Xie, X.; Hu, Y.; Cheng, H. Rapid degradation of p-arsanilic acid with simultaneous arsenic removal from aqueous solution using Fenton process. Water Res. 2016, 89, 59–67. [Google Scholar] [CrossRef]
- Peng, M.; Guan, G.; Deng, H.; Han, B.; Tian, C.; Zhuang, J.; Xu, Y.; Liu, W.; Lin, Z. PCN-224/rGO nanocomposite based photoelectrochemical sensor with intrinsic recognition ability for efficient p-arsanilic acid detection. Environ. Sci. Nano 2019, 6, 207–215. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S. A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system. J. Hazard. Mater. 2021, 418, 126299. [Google Scholar] [CrossRef]
- Giri, D.D.; Srivastava, N.; Ruidas, B.C.; Areeshi, M.Y.; Haque, S.; Pal, D.B. Bioremediation of organoarsenic pollutants from wastewater: A critical review. Biomass Convers. Biorefinery 2023, 13, 13357–13367. [Google Scholar] [CrossRef]
- Akha, N.Z.; Salehi, S.; Anbia, M. Removal of arsenic by metal organic framework/chitosan/carbon nanocomposites: Modeling, optimization, and adsorption studies. Int. J. Biol. Macromol. 2022, 208, 794–808. [Google Scholar] [CrossRef]
- Tian, L.; Li, H.; Chang, Z.; Liang, N.; Wu, M.; Pan, B. Biochar modification to enhance arsenic removal from water: A review. Environ. Geochem. Health 2023, 45, 2763–2778. [Google Scholar] [CrossRef]
- Renu; Agarwal, M.; Singh, K. Heavy metal removal from wastewater using various adsorbents: A review. J. Water Reuse Desalination 2016, 7, 387–419. [Google Scholar]
- Bataineh, H.; Pestovsky, O.; Bakac, A. Electron Transfer Reactivity of the Aqueous Iron(IV)–Oxo Complex. Outer-Sphere vs. Proton-Coupled Electron Transfer. Inorg. Chem. 2016, 55, 6719–6724. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. Magnetic nanocomposite adsorbents for abatement of arsenic species from water and wastewater. Environ. Sci. Pollut. Res. 2022, 29, 82681–82708. [Google Scholar] [CrossRef]
- McCann, C.M.; Peacock, C.L.; Hudson-Edwards, K.A.; Shrimpton, T.; Gray, N.D.; Johnson, K.L. In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil. J. Hazard. Mater. 2018, 342, 724–731. [Google Scholar] [CrossRef]
- Akhlaghi, N.; Najafpour-Darzi, G. Manganese ferrite (MnFe2O4) Nanoparticles: From synthesis to application -A review. J. Ind. Eng. Chem. 2021, 103, 292–304. [Google Scholar] [CrossRef]
- Joshi, T.P.; Zhang, G.; Jefferson, W.A.; Perfilev, A.V.; Liu, R.; Liu, H.; Qu, J. Adsorption of aromatic organoarsenic compounds by ferric and manganese binary oxide and description of the associated mechanism. Chem. Eng. J. 2017, 309, 577–587. [Google Scholar] [CrossRef]
- Ali, I.; Basheer, A.A.; Mbianda, X.Y.; Burakov, A.; Galunin, E.; Burakova, I.; Mkrtchyan, E.; Tkachev, A.; Grachev, V. Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 2019, 127, 160–180. [Google Scholar] [CrossRef] [PubMed]
- Montoro-Leal, P.; García-Mesa, J.C.; Morales-Benítez, I.; García de Torres, A.; Vereda Alonso, E. Semiautomatic method for the ultra-trace arsenic speciation in environmental and biological samples via magnetic solid phase extraction prior to HPLC-ICP-MS determination. Talanta 2021, 235, 122769. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Sahoo, P.K.; Sharma, A.; Satpati, A.K. Interfacial polymerized RGO/MnFe2O4/polyaniline fibrous nanocomposite supported glassy carbon electrode for selective and ultrasensitive detection of nitrite. Sens. Actuators B Chem. 2020, 309, 127763. [Google Scholar] [CrossRef]
- Ueda Yamaguchi, N.; Bergamasco, R.; Hamoudi, S. Magnetic MnFe2O4–graphene hybrid composite for efficient removal of glyphosate from water. Chem. Eng. J. 2016, 295, 391–402. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Wang, G.-S.; Cao, W.-Q.; Wei, Y.-Z.; Liang, J.-F.; Guo, L.; Cao, M.-S. Enhanced Microwave Absorption Property of Reduced Graphene Oxide (RGO)-MnFe2O4 Nanocomposites and Polyvinylidene Fluoride. ACS Appl. Mater. Interfaces 2014, 6, 7471–7478. [Google Scholar] [CrossRef]
- Zhang, G.; Shu, R.; Xie, Y.; Xia, H.; Gan, Y.; Shi, J.; He, J. Cubic MnFe2O4 particles decorated reduced graphene oxide with excellent microwave absorption properties. Mater. Lett. 2018, 231, 209–212. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Li, F.; Hu, X.; Xie, Z.; Hua, T. Activation of peroxymonosulfate in an electrochemical filter by MnFe2O4-rGO electro-assisted catalytic membrane for the degradation of oxytetracycline. J. Environ. Chem. Eng. 2022, 10, 107008. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, S.; Zhang, X.; Lu, C.; He, Y. Hydrothermal synthesis and photo-Fenton degradation of magnetic MnFe2O4/rGO nanocomposites. J. Mater. Sci. Mater. Electron. 2020, 31, 5176–5186. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Ge, Y.; Xu, L.; Xu, H.; He, M.; Zhang, Q.; Li, H. Reactable ionic liquid-assisted rapid synthesis of BiOI hollow microspheres at room temperature with enhanced photocatalytic activity. J. Mater. Chem. A 2014, 2, 15864–15874. [Google Scholar] [CrossRef]
- Chella, S.; Kollu, P.; Komarala, E.V.P.R.; Doshi, S.; Saranya, M.; Felix, S.; Ramachandran, R.; Saravanan, P.; Koneru, V.L.; Venugopal, V.; et al. Solvothermal synthesis of MnFe2O4-graphene composite—Investigation of its adsorption and antimicrobial properties. Appl. Surf. Sci. 2015, 327, 27–36. [Google Scholar] [CrossRef]
- Chen, X.; Chen, B. Macroscopic and Spectroscopic Investigations of the Adsorption of Nitroaromatic Compounds on Graphene Oxide, Reduced Graphene Oxide, and Graphene Nanosheets. Environ. Sci. Technol. 2015, 49, 6181–6189. [Google Scholar] [CrossRef] [PubMed]
- Barreto, M.S.C.; Elzinga, E.J.; Sparks, D.L. The adsorption of arsenate and p-arsanilic acid onto ferrihydrite and subsequent desorption by sulfate and artificial seawater: Future implications of sea level rise. Environ. Pollut. 2023, 323, 121302. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Fisher, B.; Giammar, D.E. Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent. Environ. Sci. Technol. 2008, 42, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Puls, R.W. Arsenate and Arsenite Removal by Zerovalent Iron: Effects of Phosphate, Silicate, Carbonate, Borate, Sulfate, Chromate, Molybdate, and Nitrate, Relative to Chloride. Environ. Sci. Technol. 2001, 35, 4562–4568. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, B.J.; Loeppert, R.H. Methyl arsenic adsorption and desorption behavior on iron oxides. Environ. Sci. Technol 2005, 39, 2120–2127. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-R.; Huang, C.-H. Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides. J. Hazard. Mater. 2012, 227–228, 378–385. [Google Scholar] [CrossRef]
- Chandra, V.; Park, J.; Chun, Y.; Lee, J.W.; Hwang, I.-C.; Kim, K.S. Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. ACS Nano 2010, 4, 3979–3986. [Google Scholar] [CrossRef]
- Hassani, A.; Eghbali, P.; Mahdipour, F.; Waclawek, S.; Lin, K.Y.A.; Ghanbari, F. Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective Bisphenol A degradation: Performance, mineralization, and activation mechanism. Chem. Eng. J. 2023, 453, 139556. [Google Scholar] [CrossRef]
- Lian, P.; Zhu, X.; Liang, S.; Li, Z.; Yang, W.; Wang, H. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta 2010, 55, 3909–3914. [Google Scholar] [CrossRef]
- Rathore, R.; Waghmare, A.; Rai, S.; Chandra, V. Removal of nitrobenzene from aqueous solution using manganese ferrite nanoparticles. Inorg. Chem. Commun. 2023, 153, 110848. [Google Scholar] [CrossRef]
- Subramanian, H.; Santhaseelan, H.; Dinakaran, V.T.; Devendiran, V.; Rathinam, A.J.; Mahalingam, A.; Ramachandran, S.K.; Muthukumarasamy, A.; Muthukumar, K.; Mathimani, T. Hydrothermal synthesis of spindle structure copper ferrite-graphene oxide nanocomposites for enhanced photocatalytic dye degradation and in-vitro antibacterial activity. Environ. Res. 2023, 231, 116095. [Google Scholar] [CrossRef] [PubMed]
- Vences-Alvarez, E.; Chazaro-Ruiz, L.F.; Rangel-Mendez, J.R. New bimetallic adsorbent material based on cerium-iron nanoparticles highly selective and affine for arsenic(V). Chemosphere 2022, 297, 134177. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.W.; Tong, M.; Jung, B.K.; Hasan, Z.; Zhong, C.; Jhung, S.H. Effect of central metal ions of analogous metal-organic frameworks on adsorption of organoarsenic compounds from water: Plausible mechanism of adsorption and water purification. Chem. A Eur. J. 2015, 21, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Sarker, M.; Song, J.Y.; Jhung, S.H. Adsorption of organic arsenic acids from water over functionalized metal-organic frameworks. J. Hazard. Mater. 2017, 335, 162–169. [Google Scholar] [CrossRef]
- Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.R.; Sood, A.K. Graphene Oxide–MnFe2O4 Magnetic Nanohybrids for Efficient Removal of Lead and Arsenic from Water. ACS Appl. Mater. Interfaces 2014, 6, 17426–17436. [Google Scholar] [CrossRef] [PubMed]
- Haris, S.A.; Dabagh, S.; Mollasalehi, H.; Ertas, Y.N. Alginate coated superparamagnetic iron oxide nanoparticles as nanicomposite adsorbents for arsenic removal from aqueous solutions. Sep. Purif. Technol. 2023, 310, 123193. [Google Scholar] [CrossRef]
- Rajani, M.R.; Ravishankar, R.; Maya, N.K.; Srinidhi, R.M.; Vidya, C.; Girish, K.S.; Manjunatha, C. Carbonaceous MnFe2O4 nano-adsorbent: Synthesis, characterization and investigations on chromium (VI) ions removal efficiency from aqueous solution. Appl. Surf. Sci. Adv. 2023, 16, 100434. [Google Scholar]
- Hu, Q.; Liu, Y.; Gu, X.; Zhao, Y. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles. Chemosphere 2017, 181, 328–336. [Google Scholar] [CrossRef]
- Liu, J.; Ren, S.; Cao, J.; Tsang, D.C.W.; Beiyuan, J.; Peng, Y.; Fang, F.; She, J.; Yin, M.; Shen, N.; et al. Highly efficient removal of thallium in wastewater by MnFe2O4-biochar composite. J. Hazard. Mater. 2021, 401, 123311. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M.A. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 2019, 45, 14439–14448. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, Y.; Guo, S.; Chen, R. Facile template-free fabrication of iron manganese bimetal oxides nanospheres with excellent capability for heavy metals removal. J. Colloid Interface Sci. 2017, 486, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Joshi, T.P.; Zhang, G.; Koju, R.; Qi, Z.; Liu, R.; Liu, H.; Qu, J. The removal efficiency and insight into the mechanism of para arsanilic acid adsorption on Fe-Mn framework. Sci. Total Environ. 2017, 601–602, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-S.; Qu, J.-H.; Liu, H.-J.; Liu, R.-P.; Li, G.-T. Removal Mechanism of As(III) by a Novel Fe−Mn Binary Oxide Adsorbent: Oxidation and Sorption. Environ. Sci. Technol. 2007, 41, 4613–4619. [Google Scholar] [CrossRef]
- Jung, B.K.; Jun, J.W.; Hasan, Z.; Jhung, S.H.J.C.E.J. Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8. Chem. Eng. J. 2015, 267, 9–15. [Google Scholar] [CrossRef]
- Poon, L.; Younus, S.; Wilson, L. Adsorption study of an organo-arsenical with chitosan-based sorbents. J. Colloid Interface Sci. 2014, 420, 136–144. [Google Scholar] [CrossRef]
- Hu, J.; Tong, Z.; Hu, Z.; Chen, G.; Chen, T. Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes. J. Colloid Interface Sci. 2012, 377, 355–361. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, B.; Zhang, H.; Ye, M.; Zhou, T.; Yi, J.; Hu, Q. Adsorption Behavior of Organoarsenicals over MnFe2O4-Graphene Hybrid Nanocomposite: The Role of Organoarsenic Chemical Structures. Materials 2023, 16, 7636. https://doi.org/10.3390/ma16247636
Gu B, Zhang H, Ye M, Zhou T, Yi J, Hu Q. Adsorption Behavior of Organoarsenicals over MnFe2O4-Graphene Hybrid Nanocomposite: The Role of Organoarsenic Chemical Structures. Materials. 2023; 16(24):7636. https://doi.org/10.3390/ma16247636
Chicago/Turabian StyleGu, Binxian, Haijie Zhang, Meng Ye, Ting Zhou, Jianjian Yi, and Qingsong Hu. 2023. "Adsorption Behavior of Organoarsenicals over MnFe2O4-Graphene Hybrid Nanocomposite: The Role of Organoarsenic Chemical Structures" Materials 16, no. 24: 7636. https://doi.org/10.3390/ma16247636
APA StyleGu, B., Zhang, H., Ye, M., Zhou, T., Yi, J., & Hu, Q. (2023). Adsorption Behavior of Organoarsenicals over MnFe2O4-Graphene Hybrid Nanocomposite: The Role of Organoarsenic Chemical Structures. Materials, 16(24), 7636. https://doi.org/10.3390/ma16247636