Effects of Rotational Speed on the Microstructure and Mechanical Properties of 2198-T8 Al-Li Alloy Processed by Friction Spot Welding
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure
3.2. Hardness Distribution
3.3. Tensile Properties
4. Discussion
5. Conclusions
- (1)
- As the rotational speed of the tool in FSpW increases, the heat input also gradually increases. This causes the average grain size of FSpW joints to gradually increase from 9.8 μm to 12.5 μm, while the dislocation density gradually decreases from 2.3 × 1014 m−2 to 1.8 × 1014 m−2.
- (2)
- Compared to the base material of 2198−T8, the joints of FSpW have reduced mechanical properties due to the effect of welding heat that causes both S’ and θ strengthening phases of the alloy to dissolve into the matrix. The fracture mode changes from mixed ductile–brittle fracture to ductile fracture.
- (3)
- After the FSpW process at a different speed, the difference in mechanical properties, separately, is due to dislocation density, grain size, and grain distribution. The mechanical properties of FSpW 2198−T8 Al−Li alloy decreased when the rotational speed was relatively slow or fast, and the mechanical properties of the studied FSpW joint were higher when the rotation speed was moderate, due to the uniformly distributed fine equiaxed crystals formed in the microstructure of the weld nugget region.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mishra, R.S.; Ma, Z.Y. Friction stir welding and processing. Mater. Sci. Eng. R Rep. 2005, 50, 1–78. [Google Scholar]
- Xu, C.L.; Huang, J.W.; Jiang, F.Q.; Jiang, Y.G. Dynamic recrystallization and precipitation behavior of a novel Sc, Zr alloyed Al−Zn−Mg−Cu alloy during hot deformation. Mater. Charact. 2022, 183, 111629. [Google Scholar]
- Deng, Y.; Peng, B.; Xu, G.F.; Pan, Q.L.; Yin, Z.M.; Ye, R.; Wang, Y.J.; Lu, L.Y. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys. Mater. Sci. Eng. A 2015, 639, 500–513. [Google Scholar]
- Davood, R.; Mostafa, P.; Mohammad, D.G.; Javad, M.; Ramin, H. Production of Al/Mg−Li composite by the accumulative roll bonding process. J. Mater. Res. Technol. 2020, 9, 7880–7886. [Google Scholar]
- Xie, J.L.; Chen, Y.H.; Yin, L.M.; Zhang, T.M.; Wang, S.L.; Wang, L.T. Microstructure and mechanical properties of ultrasonic spot welding TiNi/Ti6Al4V dissimilar materials using pure Al coating. J. Manuf. Process. 2021, 64, 473–480. [Google Scholar]
- Deng, H.B.; Chen, Y.H.; Jia, Y.L.; Pang, Y.; Zhang, T.M.; Wang, S.L.; Yin, L.M. Microstructure and mechanical properties of dissimilar NiTi/Ti6Al4V joints via back−heating assisted friction stir welding. J. Manuf. Process. 2021, 64, 379–391. [Google Scholar]
- Chen, Y.H.; Mao, Y.Q.; Lu, W.W.; He, P. Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints. Opt. Laser. Technol. 2017, 91, 197–202. [Google Scholar]
- Zhao, Y.; Liu, H.; Chen, S.; Lin, Z.; Hou, J. Effects of sleeve plunge depth on microstructures and mechanical properties of friction spot welded alclad 7B04−T74 aluminum alloy. Mater. Des. 2014, 62, 40–46. [Google Scholar]
- Shen, Z.; Yang, X.; Yang, S.; Zhang, Z.; Yin, Y. Microstructure and mechanical properties of friction spot welded 6061−T4 aluminum alloy. Mater. Des. 2014, 54, 766–778. [Google Scholar]
- Tier, M.D.; Rosendo, T.S.; Santos, J.F.D.; Huber, N.; Mazzaferro, J.A.; Mazzaferro, C.P.; Strohaecker, T.R. The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds. J. Mater. Process. Technol. 2013, 213, 997–1005. [Google Scholar]
- Malafaia, A.M.S.; Milan, M.T.; Oliveira, M.F.; Spinelli, D. Fatigue behavior of friction stir spot welding and riveted joints in an Al alloy. Procedia Eng. 2010, 2, 1815–1821. [Google Scholar]
- Yi, T.; Liu, S.; Fang, C.; Jiang, G.D. Eliminating hole defects and improving microstructure and mechanical properties of friction stir welded joint of 2519 aluminum alloy via TIG arc. J. Mater. Process. Technol. 2022, 310, 117773. [Google Scholar]
- Hou, Y.F.; Liu, C.Y.; Zhang, B.; Wei, L.L.; Dai, H.T.; Ma, Z.Y. Mechanical properties and corrosion resistance of the fine grain structure of Al–Zn–Mg–Sc alloys fabricated by friction stir processing and post−heat treatment. Mater. Sci. Eng. A 2020, 785, 139393. [Google Scholar]
- Li, Z.M.; Jiang, H.C.; Wang, Y.L.; Zhang, D.; Yan, D.S.; Rong, L.J. Effect of minor Sc addition on microstructure and stress corrosion cracking behavior of medium strength Al–Zn–Mg alloy. J. Mater. Process. Technol. 2018, 34, 1172–1179. [Google Scholar]
- Amancio−Filho, S.T.; Camillo, A.P.C.; Bergmann, L.; Santos, J.F.D.; Kury, S.E.; Machado, N.G.A. Preliminary Investigation of the Microstructure and Mechanical Behaviour of 2024 Aluminium Alloy Friction Spot Welds. Mater. Trans. 2011, 52, 985–991. [Google Scholar]
- Shen, Z.; Yang, X.; Zhang, Z.; Cui, L.; Li, T. Microstructure and failure mechanisms of refill friction stir spot welded 7075−T6 aluminum alloy joints. Mater. Des. 2013, 44, 476–486. [Google Scholar]
- Li, Q.L.; Huang, G.J.; Cao, Y.; Zhang, C.H.; He, J.; Jiang, H.N.; Lin, L.; Liu, Q. Microstructure refinement, strengthening and ductilization mechanisms in Al–Mg–Mn–Er–Zr alloy with high Mn content by friction stir processing. Mater. Charact. 2022, 189, 111939. [Google Scholar]
- Guo, F.Q.; Duan, S.W.; Pan, Y.Z.; Wu, D.T.; Matsuda, K.J.; Wang, T.; Zou, Y. Stress corrosion behavior and microstructure analysis of Al−Zn−Mg−Cu alloys friction stir welded joints under different aging conditions. Corros. Sci. 2023, 210, 110821. [Google Scholar]
- Ahmadi, M.; Pahlavani, M.; Rahmatabadi, D.; Javad, M.; Ramin, H.; Amir, A. An Exhaustive Evaluation of Fracture Toughness, Microstructure, and Mechanical Characteristics of Friction Stir Welded Al6061 Alloy and Parameter Model Fitting Using Response Surface Methodology. J. Mater. Eng. Perform. 2022, 30, 3418–3436. [Google Scholar]
- Tharanikumar, L.; Mohan, B.; Anbuchezhiyan, G. Enhancing the microstructure and mechanical properties of Si3N4–BN strengthened Al–Zn–Mg alloy hybrid nano composites using vacuum assisted stir casting method. J. Mater. Res. Technol. 2022, 20, 3646–3655. [Google Scholar]
- Gao, C.; Zhu, Z.; Han, J.; Li, H. Correlation of microstructure and mechanical properties in friction stir welded 2198−T8 Al–Li alloy. Mater. Sci. Eng. A 2015, 639, 489–499. [Google Scholar]
- Wang, F.F.; Li, W.Y.; Shen, J.; Hu, S.Y.; Santos, J.F.D. Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al−Li alloy. Mater. Des. 2015, 86, 933–940. [Google Scholar]
- Cox, C.D.; Gibson, B.T.; Strauss, A.M.; Cook, G.E. Energy input during friction stir spot welding. J. Manuf. Process. 2014, 16, 479–484. [Google Scholar]
- Hu, T.; Ma, K.; Topping, T.D.; Schoenung, J.M.; Lavernia, E.J. Precipitation phenomena in an ultrafine−grained Al alloy. Acta Mater. 2013, 61, 2163–2178. [Google Scholar]
- Mazzaferro, C.C.P.; Rosendo, T.S.; Tier, M.A.D.; Mazzaferro, J.A.E.; Dos Santos, J.F.; Strohaecker, T.R. Microstructural and Mechanical Observations of Galvanized TRIP Steel after Friction Stir Spot Welding. Mater. Manuf. Process. 2015, 30, 1090–1103. [Google Scholar]
Alloy | Li | Cu | Mg | Zn | Zr | Mn | Ag | Al |
---|---|---|---|---|---|---|---|---|
2198 | 0.98 | 3.29 | 0.36 | 0.34 | 0.16 | 0.05 | 0.34 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Z.; Yang, J.; Cai, Y. Effects of Rotational Speed on the Microstructure and Mechanical Properties of 2198-T8 Al-Li Alloy Processed by Friction Spot Welding. Materials 2023, 16, 1807. https://doi.org/10.3390/ma16051807
Pang Z, Yang J, Cai Y. Effects of Rotational Speed on the Microstructure and Mechanical Properties of 2198-T8 Al-Li Alloy Processed by Friction Spot Welding. Materials. 2023; 16(5):1807. https://doi.org/10.3390/ma16051807
Chicago/Turabian StylePang, Zheng, Jin Yang, and Yangchuan Cai. 2023. "Effects of Rotational Speed on the Microstructure and Mechanical Properties of 2198-T8 Al-Li Alloy Processed by Friction Spot Welding" Materials 16, no. 5: 1807. https://doi.org/10.3390/ma16051807
APA StylePang, Z., Yang, J., & Cai, Y. (2023). Effects of Rotational Speed on the Microstructure and Mechanical Properties of 2198-T8 Al-Li Alloy Processed by Friction Spot Welding. Materials, 16(5), 1807. https://doi.org/10.3390/ma16051807