Numerical and Experimental Investigations of Cold-Sprayed Basalt Fiber-Reinforced Metal Matrix Composite Coating
Abstract
:1. Introduction
2. Numerical Modeling
2.1. Finite Element Method
2.2. Numerical Model
2.3. Simulations
3. Experimental
4. Results and Discussion
4.1. Model Verification
4.1.1. Al Single-Particle Deposition
4.1.2. Cohesive Unit Suitability Verification
4.2. Al–Basalt Fiber Co-Deposition
4.3. Coating Performance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, S.; Wang, X.F.; Li, W.Y.; Jie, H.E. Effect of Substrate Hardness on the Deformation Behavior of Subsequently Incident Particles in Cold Spraying. Appl. Surf. Sci. 2011, 257, 7560–7565. [Google Scholar] [CrossRef]
- Assadi, H.; Gärtner, F.; Stoltenhoff, T.; Kreye, H. Bonding Mechanism in Cold Gas Spraying. Acta Mater. 2003, 51, 4379–4394. [Google Scholar] [CrossRef]
- Molins, R.; Normand, B.; Rannou, G.; Hannoyer, B.; Liao, H. Interlamellar Boundary Characterization in Ni-Based Alloy Thermally Sprayed Coating. Mater. Sci. Eng. A 2003, 351, 325–333. [Google Scholar] [CrossRef]
- Planche, M.P.; Normand, B.; Liao, H.; Rannou, G.; Coddet, C. Influence of HVOF Spraying Parameters on In-Flight Characteristics of Inconel 718 Particles and Correlation with the Electrochemical Behaviour of the Coating. Surf. Coat. Technol. 2002, 157, 247–256. [Google Scholar] [CrossRef]
- Dykhuizen, R.C.; Smith, M.F. Gas Dynamic Principles of Cold Spray. J. Therm. Spray Technol. 1998, 7, 205–212. [Google Scholar] [CrossRef]
- Qiu, X.; Tariq, N.u.H.; Wang, J.Q.; Tang, J.R.; Gyansah, L.; Zhao, Z.P.; Xiong, T.Y. Microstructure, Microhardness and Tribological Behavior of Al2O3 Reinforced A380 Aluminum Alloy Composite Coatings Prepared by Cold Spray Technique. Surf. Coat. Technol. 2018, 350, 391–400. [Google Scholar] [CrossRef]
- Low, C.T.J.; Wills, R.G.A.; Walsh, F.C. Electrodeposition of Composite Coatings Containing Nanoparticles in a Metal Deposit. Surf. Coat. Technol. 2006, 201, 371–383. [Google Scholar] [CrossRef]
- Marcelli, E.; Costantino, M.L.; Villa, T.; Bagnoli, P.; Zannoli, R.; Corazza, I.; Cercenelli, L. Effect of Intermediate ZrO2-CaO Coatings Deposited by Cold Thermal Spraying on the Titanium-Porcelain Bond in Dental Restorations. J. Prosthet. Dent. 2014, 112, 1201–1211. [Google Scholar] [CrossRef]
- Koricherla, M.v.; Torgerson, T.B.; Alidokht, S.A.; Munagala, V.N.V.; Chromik, R.R.; Scharf, T.W. High Temperature Sliding Wear Behavior and Mechanisms of Cold-Sprayed Ti and Ti–TiC Composite Coatings. Wear 2021, 476, 203746. [Google Scholar] [CrossRef]
- Seo, D.; Sayar, M.; Ogawa, K. SiO2 and MoSi2 Formation on Inconel 625 Surface via SiC Coating Deposited by Cold Spray. Surf. Coat. Technol. 2012, 206, 2851–2858. [Google Scholar] [CrossRef]
- Jagadeeswar, A.S.; Kumar, S.; Venkataraman, B.; Babu, P.S.; Jyothirmayi, A. Effect of Thermal Energy on the Deposition Behaviour, Wear and Corrosion Resistance of Cold Sprayed Ni-WC Cermet Coatings. Surf. Coat. Technol 2020, 399, 126138. [Google Scholar] [CrossRef]
- Yu, M.; Li, W.Y.; Suo, X.K.; Liao, H.L. Effects of Gas Temperature and Ceramic Particle Content on Microstructure and Microhardness of Cold Sprayed SiCp/Al 5056 Composite Coatings. Surf. Coat. Technol 2013, 220, 102–106. [Google Scholar] [CrossRef]
- Meydanoglu, O.; Jodoin, B.; Kayali, E.S. Microstructure, Mechanical Properties and Corrosion Performance of 7075 Al Matrix Ceramic Particle Reinforced Composite Coatings Produced by the Cold Gas Dynamic Spraying Process. Surf. Coat. Technol. 2013, 235, 108–116. [Google Scholar] [CrossRef]
- Lupoi, R.; Lupton, T.; Jenkins, R.; Robinson, A.J.; O’Donnell, G.E. Direct Manufacturing of Diamond Composite Coatings onto Silicon Wafers and Heat Transfer Performance. CIRP Ann. 2018, 67, 185–188. [Google Scholar] [CrossRef]
- Yin, S.; Yan, X.; Chen, C.; Jenkins, R.; Liu, M.; Lupoi, R. Hybrid Additive Manufacturing of Al-Ti6Al4V Functionally Graded Materials with Selective Laser Melting and Cold Spraying. J. Mater. Process. Technol. 2018, 255, 650–655. [Google Scholar] [CrossRef]
- Fernandez, R.; Jodoin, B. Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Content. J. Therm. Spray Technol. 2018, 27, 603–623. [Google Scholar] [CrossRef]
- Sansoucy, E.; Marcoux, P.; Ajdelsztajn, L.; Jodoin, B. Properties of SiC-Reinforced Aluminum Alloy Coatings Produced by the Cold Gas Dynamic Spraying Process. Surf. Coat. Technol. 2008, 202, 3988–3996. [Google Scholar] [CrossRef]
- Suo, X.; Yin, S.; Li, H.; Lupoi, R. Numerical and Experimental Investigation on Bonding Behavior of Cold Sprayed Porous WC-17Co Particles onto Different Substrates. Coatings 2018, 8, 367. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Xie, Y.; Cizek, J.; Ekoi, E.J.; Hussain, T.; Dowling, D.P.; Lupoi, R. Advanced Diamond-Reinforced Metal Matrix Composites via Cold Spray: Properties and Deposition Mechanism. Compos. B Eng. 2017, 113, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Munagala, V.N.V.; Chakrabarty, R.; Song, J.; Chromik, R.R. Effect of Metal Powder Properties on the Deposition Characteristics of Cold-Sprayed Ti6Al4V-TiC Coatings: An Experimental and Finite Element Study. Surf. Interfaces 2021, 25, 101208. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, M.; Cao, K.; Chen, H. Thermal Conductivity and Wear Resistance of Cold Sprayed Cu-Ceramic Phase Composite Coating. Surf. Coat. Technol. 2022, 434, 128135. [Google Scholar] [CrossRef]
- Yin, S.; Ekoi, E.J.; Lupton, T.L.; Dowling, D.P.; Lupoi, R. Cold Spraying of WC-Co-Ni Coatings Using Porous WC-17Co Powders: Formation Mechanism, Microstructure Characterization and Tribological Performance. Mater. Des. 2017, 126, 305–313. [Google Scholar] [CrossRef]
- Che, H.; Vo, P.; Yue, S. Metallization of Carbon Fibre Reinforced Polymers by Cold Spray. Surf. Coat. Technol. 2017, 313, 236–247. [Google Scholar] [CrossRef] [Green Version]
- Lomonaco, P.; Weiller, S.; Feki, I.; Debray, A.; Delloro, F.; Jeandin, M.; Favini, B.; Rossignol, C. Cold Spray Technology to Promote Conductivity of Short Carbon Fiber Reinforced Polyether-Ether-Ketone (PEEK). Key Eng. Mater. 2019, 813, 459–464. [Google Scholar] [CrossRef]
- Liberati, A.C.; Che, H.; Vo, P.; Yue, S. Observation of an Indirect Deposition Effect While Cold Spraying Sn-Al Mixed Powders onto Carbon Fiber Reinforced Polymers. J. Therm. Spray Technol. 2020, 29, 134–146. [Google Scholar] [CrossRef]
- Chakrabarty, R.; Song, J. Numerical Modeling of Fracture in Ceramic Micro-Particles and Insights on Ceramic Retention during Composite Cold Spray Process. Surf. Coat. Technol. 2021, 409, 126830. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High. In Proceedings of the 7th International Symposium on Ballistics Committee, Hague, The Netherlands, 19–21 April 1983; pp. 541–547. [Google Scholar]
- Lee, W.-S.; Lin, C.-F. Plastic Deformation and Fracture Behaviour of Ti-6Al-4V Alloy Loaded with High Strain Rate under Various Temperatures. Mater. Sci. Eng. A 1998, 241, 48–59. [Google Scholar] [CrossRef]
- Lesuer, D.R.; Kay, G.J.; LeBlanc, M.M. Modeling Large Strain, High Rate Deformation in Metals. In Proceedings of the TMS Fall Meeting, Pleasanton, CA, USA, 11 March–11 May 1999; pp. 75–86. [Google Scholar]
- Chakrabarty, R.; Song, J. A Modified Johnson-Cook Material Model with Strain Gradient Plasticity Consideration for Numerical Simulation of Cold Spray Process. Surf. Coat. Technol. 2020, 397, 125981. [Google Scholar] [CrossRef]
- Rittel, D. On the Conversion of Plastic Work to Heat during High Strain Rate Deformation of Glassy Polymers. Mech. Mater. 1999, 31, 131–139. [Google Scholar] [CrossRef]
- Bjerke, T.; Li, Z.; Lambros, J.; Lambros, J. Role of Plasticity in Heat Generation during High Rate Deformation and Fracture of Polycarbonate. Int. J. Plast. 2002, 18, 549–567. [Google Scholar] [CrossRef]
- Nasraoui, M.; Forquin, P.; Siad, L.; Rusinek, A. Influence of Strain Rate, Temperature and Adiabatic Heating on the Mechanical Behaviour of Poly-Methyl-Methacrylate: Experimental and Modelling Analyses. Mater. Des. 2012, 37, 500–509. [Google Scholar] [CrossRef]
- Rae, P.J.; Brown, E.N.; Orler, E.B. The Mechanical Properties of Poly(Ether-Ether-Ketone) (PEEK) with Emphasis on the Large Compressive Strain Response. Polymer 2007, 48, 598–615. [Google Scholar] [CrossRef]
- Pouriayevali, H.; Arabnejad, S.; Guo, Y.B.; Shim, V.P.W. A Constitutive Description of the Rate-Sensitive Response of Semi-Crystalline Polymers. Int. J. Impact. Eng. 2013, 62, 35–47. [Google Scholar] [CrossRef]
- Rahmati, S.; Jodoin, B. Physically Based Finite Element Modeling Method to Predict Metallic Bonding in Cold Spray. J. Therm. Spray Technol. 2020, 29, 611–629. [Google Scholar] [CrossRef]
- Warner, D.H.; Molinari, J.F. Micromechanical Finite Element Modeling of Compressive Fracture in Confined Alumina Ceramic. Acta Mater. 2006, 54, 5135–5145. [Google Scholar] [CrossRef]
- Zavattieri, P.D.; Espinosa, H.D. Grain Level Analysis of Crack Initiation and Propagation in Brittle Materials. Acta Mater. 2001, 49, 4291–4311. [Google Scholar] [CrossRef]
- Zalaznik, M.; Kalin, M.; Novak, S. Influence of the Processing Temperature on the Tribological and Mechanical Properties of Poly-Ether-Ether-Ketone (PEEK) Polymer. Tribol. Int. 2016, 94, 92–97. [Google Scholar] [CrossRef]
- Suresh, S.; Lee, S.W.; Aindow, M.; Brody, H.D.; Champagne, V.K.; Dongare, A.M. Unraveling the Mesoscale Evolution of Microstructure during Supersonic Impact of Aluminum Powder Particles. Sci. Rep. 2018, 8, 10075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, E.; Chen, Q.; Ozdemir, O.C.; Champagne, V.K.; Müftü, S. Effects of Interface Bonding on the Residual Stresses in Cold-Sprayed Al-6061: A Numerical Investigation. J. Therm. Spray Technol. 2019, 28, 472–483. [Google Scholar] [CrossRef]
- Schreiber, J.M.; Smid, I.; Eden, T.J.; Koudela, K.; Cote, D.; Champagne, V. Cold Spray Particle Impact Simulation Using the Preston-Tonks-Wallace Plasticity Model. Finite Elem. Anal. Des. 2021, 191, 103557. [Google Scholar] [CrossRef]
- Chakrabarty, R.; Song, J. Numerical Simulations of Ceramic Deposition and Retention in Metal-Ceramic Composite Cold Spray. Surf. Coat. Technol. 2020, 385, 125324. [Google Scholar] [CrossRef]
- Yin, S.; Liu, Q.; Liao, H.; Wang, X. Effect of Injection Pressure on Particle Acceleration, Dispersion and Deposition in Cold Spray. Comput. Mater. Sci. 2014, 90, 7–15. [Google Scholar] [CrossRef]
- Dosta, S.; Couto, M.; Guilemany, J.M. Cold Spray Deposition of a WC-25Co Cermet onto Al7075-T6 and Carbon Steel Substrates. Acta Mater. 2013, 61, 643–652. [Google Scholar] [CrossRef]
- Mills, R.; Dwyer-Joyce, R.S.; Loo-Morrey, M. The Mechanisms of Pedestrian Slip on Flooring Contaminated with Solid Particles. Tribol. Int. 2009, 42, 403–412. [Google Scholar] [CrossRef] [Green Version]
Parameter (Unit) | Basalt Fiber | Al | |
---|---|---|---|
General | Density, | 2700 | 2710 |
Specific heat, | 940 | 910 | |
Thermal conductivity | 0.013 | 237 | |
Thermal expansion | 140 | 16.4 | |
Melting temperature, | 1473 | 916 | |
Inelastic heat fraction, | 0.9 | 0.9 | |
Elastic | Elastic modulus, | 94 | 65.8 |
Poisson’s ratio | 0.3 | 0.3 | |
Plastic (JC plasticity model) | Yield stress, | — | 148.4 |
Hardening constant, | — | 345.5 | |
Hardening exponent, | — | 0.183 | |
Strain rate constant, | — | 0.001 | |
Thermal softening exponent, | — | 0.895 | |
Modified JC model material constant, | — | — | |
Reference strain rate, | — | 1 | |
Reference temperature, | — | 298 |
Physical Quantity. | Numerical Value | Unit |
---|---|---|
Rigidity | 3.13 × 109 | |
Critical strain | 1.08 × 10−6 | |
Fracture strain | 5.4 × 10−5 | |
Fracture energy | 0.09118 | |
Critical thickness of the fracture | 3 × 10−5 |
Cold Spray PCS1000 | |
---|---|
Powder injection position | Powder concentration bin (0.5 L) |
Nozzle material | Alloy steel |
Maximum temperature | 1000 °C |
Maximum pressure | 5 MPa |
Spraying distance (SOD) | 30 mm |
Movement | Reciprocating Motion | ||
---|---|---|---|
Line speed | 10 mm/min | ||
Load | 5 N | 10 N | 15 N |
Load time | 20 min | ||
Frequency | 2 Hz | ||
Grinding head diameter | 5 mm | ||
Grinding head material | 440C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.; Wang, Y.; Normand, B.; Xie, Y.; Tang, J.; Zhang, H.; Lin, B.; Zheng, H. Numerical and Experimental Investigations of Cold-Sprayed Basalt Fiber-Reinforced Metal Matrix Composite Coating. Materials 2023, 16, 1862. https://doi.org/10.3390/ma16051862
Liang S, Wang Y, Normand B, Xie Y, Tang J, Zhang H, Lin B, Zheng H. Numerical and Experimental Investigations of Cold-Sprayed Basalt Fiber-Reinforced Metal Matrix Composite Coating. Materials. 2023; 16(5):1862. https://doi.org/10.3390/ma16051862
Chicago/Turabian StyleLiang, Sihan, Yingying Wang, Bernard Normand, Yingchun Xie, Junlei Tang, Hailong Zhang, Bing Lin, and Hongpeng Zheng. 2023. "Numerical and Experimental Investigations of Cold-Sprayed Basalt Fiber-Reinforced Metal Matrix Composite Coating" Materials 16, no. 5: 1862. https://doi.org/10.3390/ma16051862
APA StyleLiang, S., Wang, Y., Normand, B., Xie, Y., Tang, J., Zhang, H., Lin, B., & Zheng, H. (2023). Numerical and Experimental Investigations of Cold-Sprayed Basalt Fiber-Reinforced Metal Matrix Composite Coating. Materials, 16(5), 1862. https://doi.org/10.3390/ma16051862