The Effects of Friction and Temperature in the Chemical–Mechanical Planarization Process
Abstract
:1. Introduction
2. Materials and Methods
3. Theoretical Aspects
4. Results and Discussion
4.1. Friction Characteristics in the CMP Process
4.2. Thermal Effect in the CMP Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ilie, F. Modelling of the contact processes in a friction pair with selective-transfer. J. Mater. Res. Technol. 2021, 12, 2453–2461. [Google Scholar] [CrossRef]
- Lee, H.; Sung, I.-H. Chemical mechanical polishing: A selective review of R&D trends in abrasive particle behaviors and wafer materials. Tribol. Lubr. 2019, 35, 274–285. [Google Scholar] [CrossRef]
- Tsujimura, M. Advanced in Chemical Mechanical Planarization (CMP). In Electronic and Optical Materials, 2nd ed.; Babu, S., Ed.; Woodhead Publishing: Sawston, UK, 2021; Volume 16, pp. 451–467. [Google Scholar] [CrossRef]
- Lee, H. Tribology research trends in chemical mechanical polishing (CMP) process. Tribol. Lubr. 2018, 34, 115–122. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.; Jeong, H. Approaches to Sustainability in Chemical Mechanical Polishing (CMP): A Review. Int. J. Precis. Eng. Manuf. Technol. 2021, 9, 349–367. [Google Scholar] [CrossRef]
- Xia, J.; Yu, J.; Lu, S.; Huang, Q.; Xie, C.; Wang, Z. Surface Morphology Evolution during Chemical Mechanical Polishing Based on Microscale Material Removal Modeling for Monocrystalline Silicon. Materials 2022, 15, 5641. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, P.; Yan, Y.; Zhang, B.; Kang, R.; Guo, D. Chemical–mechanical wear of monocrystalline silicon by a single pad asperity. Int. J. Mach. Tools Manuf. 2017, 120, 61–71. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Tan, B.; Li, W.; Ji, J.; Yan, M.; Cui, Z. Effect of Corrosion Inhibitor BTA on Silica Particles and their Adsorption on Copper Surface in Copper Interconnection CMP. ECS J. Solid State Sci. Technol. 2022, 11, 044002. [Google Scholar] [CrossRef]
- Liao, D.; Zhang, F.; Xie, R.; Zhao, S.; Xu, Q. Effect of interfacial friction force on material removal in full aperture continuous polishing process. Precis. Eng. 2020, 63, 214–219. [Google Scholar] [CrossRef]
- Ryu, H.-Y.; Lee, C.H.; Lee, S.U.; Hamada, S.; Yerriboina, N.P.; Park, J.-G. Theoretical validation of inhibition mechanisms of benzotriazole with copper and cobalt for CMP and post-CMP cleaning applications. Microelectron. Eng. 2022, 262, 1118332. [Google Scholar] [CrossRef]
- Manivannan, R.; Ramanathan, S. The effect of hydrogen peroxide on polishing removal rate in CMP with various abrasives. Appl. Surf. Sci. 2009, 255, 3764–3768. [Google Scholar] [CrossRef]
- Luan, X.; Cheng, J.; Liu, Y.; Wang, C. Effect of Complexing Agent Choices on Dishing Control Level and the Shelf Life in Copper CMP Slurry. ECS J. Solid State Sci. Technol. 2018, 7, P391–P396. [Google Scholar] [CrossRef]
- Wei, K.-H.; Wang, Y.-S.; Liu, C.-P.; Chen, K.-W.; Wang, Y.-L.; Cheng, Y.-L. The influence of abrasive particle size in copper chemical mechanical planarization. Surf. Coatings Technol. 2013, 231, 543–545. [Google Scholar] [CrossRef]
- Kim, S.; Saka, N.; Chun, J.-H. Pad Scratching in Chemical-Mechanical Polishing: The Effects of Mechanical and Tribological Properties. ECS J. Solid State Sci. Technol. 2014, 3, P169–P178. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Lee, H.; Jeong, H. Slurry components in metal chemical mechanical planarization (CMP) process: A review. Int. J. Precis. Eng. Manuf. 2016, 17, 1751–1762. [Google Scholar] [CrossRef]
- Levert, J.A.; Korach, C.S.; Mooney, B.; Lynam, F. Model of Particle Contact Area for Friction in Oxide Chemical Mechanical Polishing. ECS J. Solid State Sci. Technol. 2019, 8, P787–P793. [Google Scholar] [CrossRef]
- Stojadinović, J.; Bouvet, D.; Mischler, S. Prediction of Removal Rates in Chemical–Mechanical Polishing (CMP) Using Tribocorrosion Modeling. J. Bio- Tribo-Corros. 2016, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Okachi, M.; Toyotama, A.; Okuzono, T.; Yamanaka, J. Controlled Clustering in Binary Charged Colloids by Adsorption of Ionic Surfactants. Langmuir 2015, 31, 13303–13311. [Google Scholar] [CrossRef] [PubMed]
- Preston, F.W. The Theory and Design of Plate Glass Polishing Machines. J. Soc. Glass Technol. 1927, 11, 227–228. [Google Scholar]
- Tamai, K.; Yasuia, A.; Serikawa, M.; Morinagaa, H.; Doi, T.K.; Kurokawab, S. Factrial Analysis of Friction Energy for material Removal Rate Improvement in CMP Processing. In Proceedings of the ICPT2010, Phoenix, AZ, USA, 16 November 2010; pp. 257–260. [Google Scholar]
- Wade, L.G. Organic Chemistry, 6th ed.; New Jersey Pearson Prentice Hall: Hoboken, NJ, USA, 2006; pp. 139–142. [Google Scholar]
- Tamboli, D.; Banerjee, G.; Waddell, M. Novel Interpretations of CMP Removal Rate Dependencies on Slurry Particle Size and Concentration. Electrochem. Solid-State Lett. 2004, 7, F62–F65. [Google Scholar] [CrossRef]
- Lee, H.; Joo, S.; Jeong, H. Mechanical effect of colloidal silica in copper chemical mechanical planarization. J. Mater. Process. Technol. 2009, 209, 6134–6139. [Google Scholar] [CrossRef]
- Kumar, C.R.; Omkumar, M. Optimisation of Process Parameters of Chemical Mechanical Polishing of Soda Lime Glass. Silicon 2018, 11, 407–414. [Google Scholar] [CrossRef]
- Ilie, F. Effect of the Etching on Chemical Mechanical Planarization of the Selective Layer Surface. Int. J. Mater. Sci. Appl. 2017, 6, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Jeong, H. Analysis of removal mechanism on oxide CMP using mixed abrasive slurry. Int. J. Precis. Eng. Manuf. 2015, 16, 603–607. [Google Scholar] [CrossRef]
- Xiao, C.; Deng, C.; Zhang, P.; Qian, L.; Kim, S.H. Interplay between solution chemistry and mechanical activation in friction-induced material removal of silicon surface in aqueous solution. Tribol. Int. 2020, 148, 106319. [Google Scholar] [CrossRef]
- Lee, H.; Jeong, H. Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces. CIRP Ann. 2019, 58, 485–490. [Google Scholar] [CrossRef]
- Kawaguki, M. Dispersion stability and rheological properties of silica suspensions in aqueous solutions. Adv. Colloid Interface Sci. 2020, 284, 102248. [Google Scholar] [CrossRef]
- Bakier, M.A.Y.A.; Suzuki, K.; Khajornrungruang, P. Study on Nanoparticle Agglomeration During Chemical Mechanical Polishing (CMP) Performance. J. Nanofluids 2021, 10, 420–430. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilie, F.; Minea, I.-L.; Cotici, C.D.; Hristache, A.-F. The Effects of Friction and Temperature in the Chemical–Mechanical Planarization Process. Materials 2023, 16, 2550. https://doi.org/10.3390/ma16072550
Ilie F, Minea I-L, Cotici CD, Hristache A-F. The Effects of Friction and Temperature in the Chemical–Mechanical Planarization Process. Materials. 2023; 16(7):2550. https://doi.org/10.3390/ma16072550
Chicago/Turabian StyleIlie, Filip, Ileana-Liliana Minea, Constantin Daniel Cotici, and Andrei-Florin Hristache. 2023. "The Effects of Friction and Temperature in the Chemical–Mechanical Planarization Process" Materials 16, no. 7: 2550. https://doi.org/10.3390/ma16072550
APA StyleIlie, F., Minea, I.-L., Cotici, C. D., & Hristache, A.-F. (2023). The Effects of Friction and Temperature in the Chemical–Mechanical Planarization Process. Materials, 16(7), 2550. https://doi.org/10.3390/ma16072550