Fast Degradation of Rhodamine B by In Situ H2O2 Fenton System with Co and N Co-Doped Carbon Nanotubes
Abstract
:1. Introduction
2. Material and Methods
2.1. Synthesis of Co-N-C Composite Catalyst and Characterization
2.2. The Preparation of Electrode and Electrocatalytic Production of H2O2
2.3. Degradation Experiments
3. Results and Discussion
3.1. Characterization of Co-N-C Composite Catalysts
3.2. Electrochemical Performance Evaluation and Production Efficiency of H2O2
3.3. Efficient E-Fenton Degradation of RhB
3.4. Reusability of Co-N-CNTS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Zhang, B.-T.; Teng, Y.; Zhao, J.; Kuang, L.; Sun, X. Carbon Nanofibers Supported Co/Ag Bimetallic Nanoparticles for Heterogeneous Activation of Peroxymonosulfate and Efficient Oxidation of Amoxicillin. J. Hazard. Mater. 2020, 400, 123290. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Xu, C.; Zhang, X.; Huang, Y. MOFs-derived defect carbon encapsulated magnetic metallic Co nanoparticles capable of efficiently activating PMS to rapidly degrade dyes. Sep. Purif. Technol. 2022, 289, 120812. [Google Scholar] [CrossRef]
- Zeng, L.; Xiao, L.; Shi, X.; Wei, M.; Cao, J.; Long, Y. Core-Shell Prussian Blue Analogues@ Poly(m-Phenylenediamine) as Efficient Peroxymonosulfate Activators for Degradation of Rhodamine B with Reduced Metal Leaching. J. Colloid Interface Sci. 2019, 534, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ding, D.; Qian, Z.; Dzakpasu, M.; Chen, R.; Wang, G.; Yang, S. Intensification of van der Waals interaction for efficient peroxymonosulfate activation and accuracy re-evaluation of quenching experiments for reactive oxidation species identification. Chem. Eng. J. 2022, 450, 138353. [Google Scholar] [CrossRef]
- Wang, A.; Ni, J.; Wang, W.; Liu, D.; Zhu, Q.; Xue, B.; Chang, C.-C.; Ma, J.; Zhao, Y. MOF Derived Co−Fe Nitrogen Doped Graphite Carbon@crosslinked Magnetic Chitosan Micro−nanoreactor for Environmental Applications: Synergy Enhancement Effect of Adsorption−PMS Activation. Appl. Catal. B Environ. 2022, 319, 121926. [Google Scholar] [CrossRef]
- Sun, S.; Gu, Y.; Wang, Y.; Liu, Y. Dual Surfactants Coassisted Synthesis of CuO Nanoleaves for Activation of Peroxymonosulfate to Degrade Acid Orange 7. Chem. Phys. Lett. 2020, 752, 137557. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Degradation of Sulfamethoxazole Using Peroxymonosulfate Activated by Cobalt Embedded into N, O Co-Doped Carbon Nanotubes. Sep. Purif. Technol. 2021, 277, 119457. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Z.; Wang, S.; Liu, J.; Zhang, Y.; Wang, B.; Gong, Z.; Wang, M.; Dong, H.; Shi, J.; et al. Enhanced Removal of Methylparaben Mediated by Cobalt/Carbon Nanotubes (Co/CNTs) Activated Peroxymonosulfate in Chloride-Containing Water: Reaction Kinetics, Mechanisms and Pathways. Chem. Eng. J. 2021, 409, 128176. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, M.; Tang, D.; Xu, Y.; Ran, H.; He, J.; Chen, K.; Sun, J. High H2O2 selectivity and enhanced Fe2+ regeneration toward an effective electro-Fenton process based on a self-doped porous biochar cathode. Appl. Catal. B Environ. 2022, 315, 121523. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhuang, W.; Zhang, X.; Xiang, J.; Wang, X.; Song, Z.; Cao, Z.; Zhao, C. Grape-like CNTs/BaTiO3 Nanocatalyst Boosted Hydraulic-Driven Piezo-Activation of Peroxymonosulfate for Carbamazepine Removal. Chem. Eng. J. 2022, 449, 137826. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.; Yang, G.; Yuan, X.; Xu, Q.; Liu, X.; Wang, Y.; Guan, R.; Fu, Q.; Chen, F. The Novel Pretreatment of Co2+ Activating Peroxymonosulfate under Acidic Condition for Dewatering Waste Activated Sludge. J. Taiwan Inst. Chem. Eng. 2019, 102, 259–267. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, H.; Lian, C.; Wei, F.; Zhang, D.; Wu, G.; Chen, B.; Wang, S. Fe, Co, Ni Nanocrystals Encapsulated in Nitrogen-Doped Carbon Nanotubes as Fenton-like Catalysts for Organic Pollutant Removal. J. Hazard. Mater. 2016, 314, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-M.; Chen, C.-W.; Huang, C.-P.; Dong, C.-D. Removal of 4-Nonylphenol in Activated Sludge by Peroxymonosulfate Activated with Sorghum Distillery Residue-Derived Biochar. Bioresour. Technol. 2022, 360, 127564. [Google Scholar] [CrossRef]
- Li, Q.; Ren, Z.; Liu, Y.; Zhang, C.; Liu, J.; Zhou, R.; Bu, Y.; Mao, F.; Wu, H. Petal-like Hierarchical Co3O4/N-Doped Porous Carbon Derived from Co-MOF for Enhanced Peroxymonosulfate Activation to Remove Tetracycline Hydrochloride. Chem. Eng. J. 2023, 452, 139545. [Google Scholar] [CrossRef]
- Xu, X.; Ran, F.; Lai, H.; Cheng, Z.; Lv, T.; Shao, L.; Liu, Y. In situ confined bimetallic metal-organic framework derived nanostructure within 3D interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances. ACS Appl. Mater. Interfaces 2019, 11, 35999–36009. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-K.; Kim, J.K.; Kang, Y.C. Amorphous molybdenum sulfide on threedimensional hierarchical hollow microspheres comprising bamboo-like N-doped carbon nanotubes as a highly active hydrogen evolution reaction catalyst. ACS Sustain. Chem. Eng. 2018, 6, 12706–12715. [Google Scholar] [CrossRef]
- Cipriano Crapina, L.; Dzene, L.; Brendlé, J.; Fourcade, F.; Amrane, A.; Limousy, L. Review: Clay-Modified Electrodes in Heterogeneous Electro-Fenton Process for Degradation of Organic Compounds: The Potential of Structural Fe(III) as Catalytic Sites. Materials 2021, 14, 7742. [Google Scholar] [CrossRef]
- Nazir, M.A.; Najam, T.; Shahzad, K.; Wattoo, M.A.; Hussain, T.; Tufail, M.K.; Shah, S.S.A.; Rehman, A.U. Heterointerface engineering of water stable ZIF-8@ZIF-67: Adsorption of rhodamine B from water. Surf. Interfaces 2022, 34, 102324. [Google Scholar] [CrossRef]
- Jamshaid, M.; Nazir, M.A.; Najam, T.; Shah, S.S.A.; Khan, H.M.; Rehman, A.U. Facile synthesis of Yb3+-Zn2+ substituted M type hexaferrites: Structural, electric and photocatalytic properties under visible light for methylene blue removal. Chem. Phys. Lett. 2022, 805, 139939. [Google Scholar] [CrossRef]
- Eddy, D.R.; Nursyamsiah, D.; Permana, M.D.; Solihudin; Noviyanti, A.R.; Rahayu, I. Green Production of Zero-Valent Iron (ZVI) Using Tea-Leaf Extracts for Fenton Degradation of Mixed Rhodamine B and Methyl Orange Dyes. Materials 2022, 15, 332. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Hu, J.; Xiang, Y.; Li, C.; Fu, L.; Li, Q.; Wei, X. Carbon-Based Nanocomposites as Fenton-Like Catalysts in Wastewater Treatment Applications: A Review. Materials 2021, 14, 2643. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Tu, C.-H.; Lin, Y.-S. Application of Graphene and Carbon Nanotubes on Carbon Felt Electrodes for the Electro-Fenton System. Materials 2019, 12, 1698. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Breslin, C.B. Graphene-Modified Composites and Electrodes and Their Potential Applications in the Electro-Fenton Process. Materials 2020, 13, 2254. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, L.; Tang, Y.; Zhang, Y.; Jia, D.; Kong, L. Bamboo-like carbon nanotubes containing sulfur for high performance supercapacitors. Electrochim. Acta 2016, 191, 846–853. [Google Scholar] [CrossRef]
- Ameli, A.; Arjmand, M.; Pötschke, P.; Krause, B.; Sundararaj, U. Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped carbon nanotube/polyvinylidene fluoride nanocomposites. Carbon 2016, 106, 260–278. [Google Scholar] [CrossRef]
- Jiao, Y.; Song, Q.; Yin, X.; Han, L.; Li, W.; Li, H. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band. J. Mater. Sci. Technol. 2022, 119, 200–208. [Google Scholar] [CrossRef]
- Yao, J.; Dong, Z.; Ye, X.; Yang, J.; Jia, Y.; Zhang, Y.; Liu, H. Electrochemically Activated Peroxymonosulfate with Mixed Metal Oxide Electrodes for Sulfadiazine Degradation: Mechanism, DFT Study and Toxicity Evaluation. Chemosphere 2022, 309, 136695. [Google Scholar] [CrossRef]
- Mao, W.; Wang, D.; Wang, X.; Hu, X.; Gao, F.; Su, Z. Efficient Cobalt-Based Metal-Organic Framework Derived Magnetic Co@C-600 Nanoreactor for Peroxymonosulfate Activation and Oxytetracycline Degradation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129234. [Google Scholar] [CrossRef]
- Kumar, O.P.; Shahzad, K.; Nazir, M.A.; Farooq, N.; Malik, M.; Shah, S.S.A.; Rehman, A. Photo-Fenton activated C3N4x/AgOy@Co1−xBi0.1−yO7 dual s-scheme heterojunction towards degradation of organic pollutants. Opt. Mater. 2022, 126, 112199. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, W.; Fang, J.; Wan, Y.; Tao, X.; Guo, L.; Feng, Q. Fast Degradation of Rhodamine B by In Situ H2O2 Fenton System with Co and N Co-Doped Carbon Nanotubes. Materials 2023, 16, 2606. https://doi.org/10.3390/ma16072606
Cui W, Fang J, Wan Y, Tao X, Guo L, Feng Q. Fast Degradation of Rhodamine B by In Situ H2O2 Fenton System with Co and N Co-Doped Carbon Nanotubes. Materials. 2023; 16(7):2606. https://doi.org/10.3390/ma16072606
Chicago/Turabian StyleCui, Wei, Jiahui Fang, Yuanyuan Wan, Xueyu Tao, Litong Guo, and Qiyan Feng. 2023. "Fast Degradation of Rhodamine B by In Situ H2O2 Fenton System with Co and N Co-Doped Carbon Nanotubes" Materials 16, no. 7: 2606. https://doi.org/10.3390/ma16072606
APA StyleCui, W., Fang, J., Wan, Y., Tao, X., Guo, L., & Feng, Q. (2023). Fast Degradation of Rhodamine B by In Situ H2O2 Fenton System with Co and N Co-Doped Carbon Nanotubes. Materials, 16(7), 2606. https://doi.org/10.3390/ma16072606