pH-Effect in the Fabrication of ZnO Nanostructured Thin Films by Chemical Bath Deposition for Increasing the Efficiency of Solar Cells
Abstract
1. Introduction
2. ZnO Nanostructured Thin Films at Different pH Values
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, Y.; Wang, J.; Chen, R.; Zhou, D.; Xiang, L. A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application. Crystals 2016, 6, 148. [Google Scholar] [CrossRef][Green Version]
- Smriti, T.; Sanjay, K.M. Investigating the formation of diverse ZnO nanostructures based on solvent, temperature, and pH as adjustable parameters. Mater. Adv. 2021, 2, 511. [Google Scholar]
- Ahmed, F.A.; Sabah, M.A.; Samir, M.H.; Munirah, A.A.; Naser, M.A.S.; Mohammad, S. Effect of different pH values on growth solutions for the ZnO nanostructures. Chin. J. Phys. 2021, 71, 175–189. [Google Scholar]
- Vernardou, D.; Kenanakis, G.; Couris, S.; Koudoumas, E.; Kymakis, E.; Katsarakis, N. pH effect on the morphology of ZnO nanostructures grown with aqueous chemical growth. Thin Solid Films 2007, 515, 8764–8767. [Google Scholar] [CrossRef]
- Choi, W.M.; Shin, K.S.; Lee, H.S.; Choi, D.; Kim, K.; Shin, H.-J.; Yoon, S.-M.; Choi, J.-Y.; Kim, S.-W. Selective growth of ZnO nanorods on SiO2/Si substrates using a graphene buffer layer. Nano Res. 2011, 4, 440–447. [Google Scholar] [CrossRef]
- Rizwan, W.; Ansari, S.G.; Young, S.K.; Minwu, S.; Hyung-Shik, S. The role of pH variation on the growth of zinc oxide nanostructures. Appl. Surf. Sci. 2009, 255, 4891–4896. [Google Scholar]
- Hochepied, J.F.; Almeida de Oliveira, A.P.; Guyot-Ferréo, V.; Tranchant, J.F. Zinc oxide pompom-like particles from temperature-driven ammonia decomplexation. J. Cryst. Growth 2005, 283, 156–162. [Google Scholar] [CrossRef]
- Wei, B.; Ke, Y.; Qiuxiang, Z.; Xia, Z.; Deyan, P.; Ziqiang, Z.; Ning, D.; Yan, S. Large-scale synthesis of zinc oxide rose-like structures and their optical properties. Phys. E Low-Dimens. Syst. Nanostruct. Vol. 2008, 40, 822–827. [Google Scholar]
- Omri, K.; Najeh, I.; Dhahri, R.; El Ghou, J.; El Mir, L. Effects of temperature on the optical and electrical properties of ZnO nanoparticles synthesized by sol–gel method. Microelectron. Eng. 2014, 128, 53–58. [Google Scholar] [CrossRef]
- Seok, C.C.; Do Kyung, L.; Sang Ho, S. Effects of Experimental Configuration on the Morphology of Two-Dimensional ZnO Nanostructures Synthesized by Thermal Chemical-Vapor Deposition. Crystals 2020, 10, 517. [Google Scholar]
- Choi, S.C.; Lee, D.K.; Sohn, S.H. Nano/Micro-Structured ZnO Rods Synthesized by Thermal Chemical Vapor Deposition with Perpendicular Configuration. Nanomaterials 2021, 11, 2518. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Jin, D.K.; Jeong, J.; Kang, B.; Yang, W.; Ali, A.; Yoo, J.; Kim, M.; Yi, G.-C.; Hong, Y.J. Hong. Facet-selective morphology-controlled remote epitaxy of ZnO microcrystals via wet chemical synthesis. Sci. Rep. 2021, 11, 22697. [Google Scholar] [CrossRef] [PubMed]
- Ahad, H.J.; Shahzad, N.; Khan, M.A.; Ayub, M.; Iqbal, N.; Hassan, M.; Hussain, N.; Rameel, M.I.; Shahzad, M.I. Effect of ZnO nanostructures on the performance of dye sensitized solar cells. Sol. Energy 2021, 230, 492–500. [Google Scholar]
- Laurenti, M.; Garino, N.; Porro, S.; Fontana, M.; Gerbaldi, C. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries. J. Alloy. Compd. 2015, 640, 321–326. [Google Scholar] [CrossRef]
- Umar, A.; Chauhan, M.S.; Chauhan, S.; Kumar, R.; Sharma, P.; Tomar, K.J.; Wahab, R.; Al-Hajry, A.; Singh, D. Applications of ZnO nanoflowers as antimicrobial agents for Escherichia coli and enzyme-free glucose sensor. J. Biomed. Nanotechnol. 2013, 9, 1794–1802. [Google Scholar] [CrossRef] [PubMed]
- Siregar, N.; Motlan, U.; Panggabean, J.H.; Sirait, M.; Rajagukguk, J.; Gultom, N.S.; Sabir, F.K. Fabrication of Dye-Sensitized Solar Cells (DSSC) Using Mg-Doped ZnO as Photoanode and Extract of Rose Myrtle (Rhodomyrtus tomentosa) as Natural Dye. Int. J. Photoenergy 2021, 7, 4033692. [Google Scholar] [CrossRef]
- Cho, S.I.; Sung, H.K.; Lee, S.J.; Kim, W.H.; Kim, D.H.; Han, Y.S. Photovoltaic Performance of Dye-Sensitized Solar Cells Containing ZnO Microrods. Nanomaterials 2019, 9, 1645. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Devabharathi, V.; Palanisamy, K.L.; Meenakshi, S.N. Influence of pH on the performance of ZnO nanocrystal based dye sensitized solar cells. Superlattices Microstruct. 2014, 75, 99–104. [Google Scholar] [CrossRef]
- Senthil, T.S.; Kim, A.Y.; Muthukumarasamy, N.; Kang, M. Improved performance of dye sensitized ZnO nanorod solar cells prepared using TiO2 seed layer. J. Sol-Gel Sci. Technol. 2013, 67, 420–427. [Google Scholar] [CrossRef]
- Cullity, B.D.; Stock, S.R. Elements of X-ray Diffraction, 3rd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2001. [Google Scholar]
- Kumar, S.; Jeon, H.C.; Kang, T.W.; Seth, R.; Panwar, S.; Shinde, S.K.; Waghmode, D.P.; Saratale, R.G.; Choubey, R.K. Variation in chemical bath pH and the corresponding precursor concentration for optimizing the optical, structural and morphological properties of ZnO thin films. J. Mater. Sci. Mater. Electron. 2019, 30, 17747–17758. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Barrientos, A.; Ambrosio-Lazaro, R.C.; Ramirez-Bone, R.; Garcia-Ramirez, M.A.; Perez-Cortes, O.; Tapia-Olvera, R.; Plaza-Castillo, J. pH-Effect in the Fabrication of ZnO Nanostructured Thin Films by Chemical Bath Deposition for Increasing the Efficiency of Solar Cells. Materials 2023, 16, 3275. https://doi.org/10.3390/ma16083275
Garcia-Barrientos A, Ambrosio-Lazaro RC, Ramirez-Bone R, Garcia-Ramirez MA, Perez-Cortes O, Tapia-Olvera R, Plaza-Castillo J. pH-Effect in the Fabrication of ZnO Nanostructured Thin Films by Chemical Bath Deposition for Increasing the Efficiency of Solar Cells. Materials. 2023; 16(8):3275. https://doi.org/10.3390/ma16083275
Chicago/Turabian StyleGarcia-Barrientos, Abel, Roberto Carlos Ambrosio-Lazaro, Rafael Ramirez-Bone, Mario A. Garcia-Ramirez, Obed Perez-Cortes, Ruben Tapia-Olvera, and Jairo Plaza-Castillo. 2023. "pH-Effect in the Fabrication of ZnO Nanostructured Thin Films by Chemical Bath Deposition for Increasing the Efficiency of Solar Cells" Materials 16, no. 8: 3275. https://doi.org/10.3390/ma16083275
APA StyleGarcia-Barrientos, A., Ambrosio-Lazaro, R. C., Ramirez-Bone, R., Garcia-Ramirez, M. A., Perez-Cortes, O., Tapia-Olvera, R., & Plaza-Castillo, J. (2023). pH-Effect in the Fabrication of ZnO Nanostructured Thin Films by Chemical Bath Deposition for Increasing the Efficiency of Solar Cells. Materials, 16(8), 3275. https://doi.org/10.3390/ma16083275