Prediction of Primary Dendrite Arm Spacing of the Inconel 718 Deposition Layer by Laser Cladding Based on a Multi-Scale Simulation
Abstract
:1. Introduction
2. Mathematical Model
2.1. Macroscopic Heat and Mass Transfer Model
- (1)
- Liquid fluid flow in the molten pool is Newtonian, laminar and incompressible;
- (2)
- The mushy region is assumed as a porous medium with isotropic permeability;
- (3)
- Heat flux from heated powder and heat loss due to evaporation are neglected;
- (4)
- The effect of shielding gas, powder feeding gas and powder on the surface of the molten pool is ignored.
2.2. Microscopic Phase-Field Model
2.3. Model Parameters
3. Experimental Materials and Scheme
4. Results and Discussion
4.1. Solidification Characteristics of Molten Pool
4.2. Simulation of Microstructure
4.3. Influence of the Processing Parameters on the PDAS
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Babu, S.S.; Raghavan, N.; Raplee, J.; Foster, S.J.; Frederick, C.; Haines, M.; Dinwiddie, R.; Kirka, M.K.; Plotkowski, A.; Lee, Y.; et al. Additive manufacturing of nickel superalloys: Opportunities for innovation and challenges related to qualification. Metall. Mater. Trans. A 2018, 49, 3764–3780. [Google Scholar] [CrossRef]
- Laeng, J.; Stewart, J.G.; Liou, F.W. Laser metal forming processes for rapid prototyping—A review. Int. J. Prod. Res. 2000, 38, 3973–3996. [Google Scholar] [CrossRef]
- Wang, L.; Felicelli, S. Analysis of thermal phenomena in LENS™ deposition. Mater. Sci. Eng. A 2006, 435, 625–631. [Google Scholar] [CrossRef]
- Azadian, S.; Wei, L.Y.; Warren, R. Delta phase precipitation in Inconel 718. Mater. Charact. 2004, 53, 7–16. [Google Scholar] [CrossRef]
- Moshtaghi, M.; Safyari, M.; Mori, G. Combined thermal desorption spectroscopy, hydrogen visualization, HRTEM and EBSD investigation of a Ni–Fe–Cr alloy: The role of hydrogen trapping behavior in hydrogen-assisted fracture. Mater. Sci. Eng. A 2022, 848, 143428. [Google Scholar] [CrossRef]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; Van Humbeeck, J.; Kruth, J.-P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010, 58, 3303–3312. [Google Scholar] [CrossRef]
- Kurz, W.; Trivedi, R. Rapid solidification processing and microstructure formation. Mater. Sci. Eng. A 1994, 179, 46–51. [Google Scholar] [CrossRef]
- Amato, K.N.; Gaytan, S.M.; Murr, L.E.; Martinez, E.; Shindo, P.W.; Hernandez, J.; Collins, S.; Medina, F. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater. 2012, 60, 2229–2239. [Google Scholar] [CrossRef]
- Sames, W.J.; List, F.A.; Pannala, S.; Dehoff, R.R.; Babu, S.S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 2016, 61, 315–360. [Google Scholar] [CrossRef]
- Collins, P.C.; Brice, D.A.; Samimi, P.; Ghamarian, I.; Fraser, H.L. Microstructural control of additively manufactured metallic materials. Annu. Rev. Mater. Res. 2016, 46, 63–91. [Google Scholar] [CrossRef]
- Hunt, J.D. Solidification and Casting of Metals; The Metal Society: London, UK, 1979. [Google Scholar]
- Ghosh, S.; Ma, L.; Ofori-Opoku, N.; Guyer, J.E. On the primary spacing and microsegregation of cellular dendrites in laser deposited Ni–Nb alloys. Model. Simul. Mater. Sci. Eng. 2017, 25, 065002. [Google Scholar] [CrossRef]
- Khanzadeh, M.; Chowdhury, S.; Marufuzzaman, M.; Tschopp, M.A.; Bian, L. Porosity prediction: Supervised-learning of thermal history for direct laser deposition. J. Manuf. Syst. 2018, 47, 69–82. [Google Scholar] [CrossRef]
- Xiao, H.; Li, S.; Han, X.; Mazumder, J.; Song, L. Laves phase control of Inconel 718 alloy using quasi-continuous-wave laser additive manufacturing. Mater. Des. 2017, 122, 330–339. [Google Scholar] [CrossRef]
- Muvvala, G.; Karmakar, D.P.; Nath, A.K. Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy. Opt. Lasers Eng. 2017, 88, 139–152. [Google Scholar] [CrossRef]
- Hofmeister, W.; Griffith, M. Solidification in direct metal deposition by LENS processing. JOM 2001, 53, 30–34. [Google Scholar] [CrossRef]
- Xia, M.; Gu, D.; Yu, G.; Dai, D.; Chen, H.; Shi, Q. Influence of hatch spacing on heat and mass transfer, thermodynamics and laser processability during additive manufacturing of Inconel 718 alloy. Int. J. Mach. Tools Manuf. 2016, 109, 147–157. [Google Scholar] [CrossRef]
- Liang, Y.J.; Wang, H.M. Origin of stray-grain formation and epitaxy loss at substrate during laser surface remelting of single-crystal nickel-base superalloys. Mater. Des. 2016, 102, 297–302. [Google Scholar] [CrossRef]
- Gäumann, M.; Bezencon, C.; Canalis, P.; Kurz, W. Single-crystal laser deposition of superalloys: Processing–microstructure maps. Acta Mater. 2001, 49, 1051–1062. [Google Scholar] [CrossRef]
- Acharya, R.; Sharon, J.A.; Staroselsky, A. Prediction of microstructure in laser powder bed fusion process. Acta Mater. 2017, 124, 360–371. [Google Scholar] [CrossRef]
- Knapp, G.L.; Mukherjee, T.; Zuback, J.S.; Wei, H.L.; Palmer, T.A.; De, A.; DebRoy, T. Building blocks for a digital twin of additive manufacturing. Acta Mater. 2017, 135, 390–399. [Google Scholar] [CrossRef]
- Boettinger, W.J.; Warren, J.A.; Beckermann, C.; Karma, A. Phase-field simulation of solidification. Annu. Rev. Mater. Res. 2002, 32, 163–194. [Google Scholar] [CrossRef]
- Steinbach, I. Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 2009, 17, 073001. [Google Scholar] [CrossRef]
- Moelans, N.; Blanpain, B.; Wollants, P. An introduction to phase-field modeling of microstructure evolution. Calphad 2008, 32, 268–294. [Google Scholar] [CrossRef]
- Nie, P.; Ojo, O.A.; Li, Z. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy. Acta Mater. 2014, 77, 85–95. [Google Scholar] [CrossRef]
- Keller, T.; Lindwall, G.; Ghosh, S.; Ma, L.; Lane, B.M.; Zhang, F.; Kattner, U.R.; Lass, E.A.; Heigel, J.C.; Idell, Y.; et al. Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys. Acta Mater. 2017, 139, 244–253. [Google Scholar] [CrossRef]
- Qi, H.; Mazumder, J.; Ki, H. Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. J. Appl. Phys. 2006, 100, 024903. [Google Scholar] [CrossRef]
- He, X.; Song, L.; Yu, G.; Mazumder, J. Solute transport and composition profile during direct metal deposition with coaxial powder injection. Appl. Surf. Sci. 2011, 258, 898–907. [Google Scholar] [CrossRef]
- He, X.; Fuerschbach, P.W.; DebRoy, T. Heat transfer and fluid flow during laser spot welding of 304 stainless steel. J. Phys. D Appl. Phys. 2003, 36, 1388. [Google Scholar] [CrossRef]
- Asai, S.; Muchi, I. Theoretical analysis and model experiments on the formation mechanism of channel-type segregation. Trans. Iron Steel Inst. Jpn. 1978, 18, 90–98. [Google Scholar] [CrossRef]
- Morville, S.; Carin, M.; Peyre, P.; Gharbi, M.; Carron, D.; Le Masson, P.; Fabbro, R. 2D longitudinal modeling of heat transfer and fluid flow during multilayered direct laser metal deposition process. J. Laser Appl. 2012, 24, 032008. [Google Scholar] [CrossRef]
- Echebarria, B.; Folch, R.; Karma, A.; Plapp, M. Quantitative phase-field model of alloy solidification. Phys. Rev. E 2004, 70, 061604. [Google Scholar] [CrossRef] [PubMed]
- Karma, A. Phase-field formulation for quantitative modeling of alloy solidification. Phys. Rev. Lett. 2001, 87, 115701. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Solidification spacing, ΔT | 60 K |
Melting point of pure nickel, Tm | 1726.15 K |
Inconel 718 liquidus, TL (calculated by J-mat pro) | 1635.14 K |
Inconel 718 solidus, TS (calculated by J-mat pro) | 1489.63 K |
Fluid Diffusion Coefficient, D (calculated by J-mat pro) | 0.7 × 10−9 m2/s |
Gibbs-Thomson Coefficient, Γ | 1.8 × 10−7 Km |
Process Parameters | Value |
---|---|
Radius of beam, rl | 1.1 mm |
Powder feeding rate, mf | 10 g/min |
Powder flow radius, rp | 2.3 mm |
Powder capture efficiency, ηm | 0.9 |
Energy absorption efficiency of powder, ηp | 0.22 |
Convective Heat Transfer Coefficient, hc | 10 W/(m2·K) |
Parameter | Value |
---|---|
Initial alloy mass fraction, c0 | 5% |
Equilibrium Partition Coefficient, ke | 0.48 |
Liquidus Slope, ml | −10.5 K%−1 |
Equilibrium Freezing Range, T | 57 K |
Anisotropy Strength, δ | 3% |
Capillary Length, d0 | 8.0 × 10−9 m |
Liquid Diffusion Coefficient, Dl | 3 × 10−9 m2 s−1 |
Solid Diffusion Coefficient, Ds | 10−12 m2 s−1 |
Element | Ni | Co | Mo | Al | Nb | C | Cr |
---|---|---|---|---|---|---|---|
Content | 52 | 0.1 | 2.94 | 0.53 | 5.16 | 0.037 | 18.7 |
No. | P (W) | V (mm/s) | G (K/m) | R (m/s) |
---|---|---|---|---|
1 | 1500 | 4 | 4.42 × 105 | 1.47 × 10−3 |
2 | 1500 | 8 | 6.09 × 105 | 3.21 × 10−3 |
3 | 1500 | 12 | 6.48 × 105 | 6.23 × 10−3 |
4 | 1900 | 4 | 4.65 × 105 | 1.68 × 10−3 |
5 | 1900 | 8 | 5.41 × 105 | 3.95 × 10−3 |
6 | 1900 | 12 | 5.69 × 105 | 6.38 × 10−3 |
7 | 2300 | 4 | 4.76 × 105 | 1.77 × 10−3 |
8 | 2300 | 8 | 4.85 × 105 | 4.03 × 10−3 |
9 | 2300 | 12 | 4.98 × 105 | 7.80 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Z.; Kong, X.; Ma, L.; Dong, J.; Li, X. Prediction of Primary Dendrite Arm Spacing of the Inconel 718 Deposition Layer by Laser Cladding Based on a Multi-Scale Simulation. Materials 2023, 16, 3479. https://doi.org/10.3390/ma16093479
Jin Z, Kong X, Ma L, Dong J, Li X. Prediction of Primary Dendrite Arm Spacing of the Inconel 718 Deposition Layer by Laser Cladding Based on a Multi-Scale Simulation. Materials. 2023; 16(9):3479. https://doi.org/10.3390/ma16093479
Chicago/Turabian StyleJin, Zhibo, Xiangwei Kong, Liang Ma, Jun Dong, and Xiaoting Li. 2023. "Prediction of Primary Dendrite Arm Spacing of the Inconel 718 Deposition Layer by Laser Cladding Based on a Multi-Scale Simulation" Materials 16, no. 9: 3479. https://doi.org/10.3390/ma16093479
APA StyleJin, Z., Kong, X., Ma, L., Dong, J., & Li, X. (2023). Prediction of Primary Dendrite Arm Spacing of the Inconel 718 Deposition Layer by Laser Cladding Based on a Multi-Scale Simulation. Materials, 16(9), 3479. https://doi.org/10.3390/ma16093479