Properties of Biocomposites Made of Extruded Apple Pomace and Potato Starch: Mechanical and Physicochemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
Pre-Treatment of Apple Pomace and Biocomposite Production
2.2. Mechanical Properties
2.3. Density
2.4. Water Contact Angle
2.5. Colour Analysis
2.6. Scanning Electron Microscope (SEM)
2.7. Thermogravimetry Analysis (TGA) and Derivative Differential Thermal Analysis (DTA)
2.8. FTIR Infrared Spectrum Analysis
2.9. Moisture Absorption
2.10. Statistical Analysis
3. Results
3.1. Bending Strength and Young’s Modulus
3.2. Density
3.3. Water Contact Angle
3.4. Colour Analysis
3.5. Scanning Electron Microscope (SEM)
3.6. Thermogravimetry Analysis (TGA) and Derivative Differential Thermal Analysis (DTA)
3.7. FTIR Infrared Spectrum Analysis
3.8. Moisture Absorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asgher, M.; Qamar, S.A.; Bilal, M.; Iqbal, H.M. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res. Int. 2020, 137, 109625. [Google Scholar] [CrossRef]
- Yaradoddi, J.S.; Banapurmath, N.R.; Ganachari, S.V.; Soudagar, M.E.M.; Mubarak, N.M.; Hallad, S.; Hugar, S.; Fayaz, H. Biodegradable carboxymethyl cellulose based material for sustainable packaging application. Sci. Rep. 2020, 10, 21960. [Google Scholar] [CrossRef]
- Loureiro, N.C.; Esteves, J.L. Green composites in automotive interior parts: A solution using cellulosic fibers. In Green Composites for Automotive Applications; Woodhead Publishing: Sawston, UK, 2019; pp. 81–97. [Google Scholar]
- Tulej, W.; Głowacki, S. Modeling of the drying process of apple pomace. Appl. Sci. 2022, 12, 1434. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vlăduț, V.; Biriș, S.Ș. Sustainable valorization of waste and by-products from sugarcane processing. Sustainability 2022, 14, 11089. [Google Scholar] [CrossRef]
- Moreno, A.G.; Guzman-Puyol, S.; Domínguez, E.; Benítez, J.J.; Segado, P.; Lauciello, S.; Ceseracciu, L.; Porras-Vázquez, J.M.; Leon-Reina, L.; Heredia, A.; et al. Pectin-cellulose nanocrystal biocomposites: Tuning of physical properties and biodegradability. Int. J. Biol. Macromol. 2021, 180, 709–717. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Brar, S.K. Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review. Renew. Sustain. Energy Rev. 2013, 27, 789–805. [Google Scholar] [CrossRef]
- Gowman, A.C.; Picard, M.C.; Lim, L.T.; Misra, M.; Mohanty, A.K. Fruit waste valorization for biodegradable biocomposite applications: A review. BioResources 2019, 14, 10047–10092. [Google Scholar] [CrossRef]
- Perussello, C.A.; Zhang, Z.; Marzocchella, A.; Tiwari, B.K. Valorization of Apple Pomace by Extraction of Valuable Compounds. Compr. Rev. Food Sci. Food Saf. 2017, 16, 776–796. [Google Scholar] [CrossRef]
- Nawirska, A.; Kwaśniewska, M. Dietary fibre fractions from fruit and vegetable processing waste. Food Chem. 2005, 91, 221–225. [Google Scholar] [CrossRef]
- Kuvvet, C.; Uzuner, S.; Cekmecelioglu, D. Improvement of pectinase production by co-culture of Bacillus spp. using apple pomace as a carbon source. Waste Biomass Valoriz. 2019, 10, 1241–1249. [Google Scholar] [CrossRef]
- Bhushan, S.; Gupta, M. Apple pomace: Source of dietary fibre and antioxidant for food fortification. In Handbook of Food Fortification and Health; Humana Press: New York, NY, USA, 2013; pp. 21–27. [Google Scholar]
- Hejft, R.; Obidziński, S.; Jałbrzykowski, M.; Markowski, J. Production of heating pellets with apple pomace content. J. Res. Appl. Agric. Eng. 2016, 61, 29–34. [Google Scholar]
- Chojnacki, J.; Zdanowicz, A.; Ondruška, J.; Šooš, Ľ.; Smuga-Kogut, M. The Influence of apple, carrot and red beet pomace content on the properties of pellet from barley straw. Energies 2021, 14, 405. [Google Scholar] [CrossRef]
- Jiang, J.; Huang, Y.; Liu, X.; Huang, H. The effects of apple pomace, bentonite and calcium superphosphate on swine manure aerobic composting. Waste Manag. 2014, 34, 1595–1602. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products: A review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- Choudhury, A.G.; Roy, P.; Kumari, S.; Singh, V.K. Utility of Fruit-Based Industry Waste. In Handbook of Solid Waste Management: Sustainability through Circular Economy; Springer Nature: Singapore, 2022; pp. 757–784. [Google Scholar]
- Bhargava, N.; Sharanagat, V.S.; Mor, R.S.; Kumar, K. Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends Food Sci. Technol. 2020, 105, 385–401. [Google Scholar] [CrossRef]
- Riaz, A.; Lei, S.; Akhtar, H.M.S.; Wan, P.; Chen, D.; Jabbar, S.; Abid, M.; Hashim, M.M.; Zeng, X. Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int. J. Biol. Macromol. 2018, 114, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Zdybel, E.; Tomaszewska-Ciosk, E.; Gertchen, M.; Drożdż, W. Selected properties of biodegradable material produced from thermoplastic starch with by-products of food industry addition. Pol. J. Chem. Technol. 2017, 19, 51–55. [Google Scholar] [CrossRef]
- Jiang, Y.; Simonsen, J.; Zhao, Y. Compression-molded biocomposite boards from red and white wine grape pomaces. J. Appl. Polym. Sci. 2011, 119, 2834–2846. [Google Scholar] [CrossRef]
- Gaikwad, K.K.; Lee, J.Y.; Lee, Y.S. Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application. J. Food Sci. Technol. 2016, 53, 1608–1619. [Google Scholar] [CrossRef]
- Wojdalski, J.; Grochowicz, J.; Ekielski, A.; Radecka, K.; Stępniak, S.; Orłowski, A.; Florczak, I.; Drożdż, B.; Żelaziński, T.; Kosmala, G. Production and Properties of Apple Pomace Pellets and their Suitability for Energy Generation Purposes. Annu. Set Environ. Prot. Rocz. Ochr. Sr. 2016, 18, 89–111. [Google Scholar]
- Gouw, V.P. Investigation of Bioactive Compounds in Different Types of Fruit Pomace and Their Applications as Bulk Materials for Creating Biocomposite. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2016. Volume 11. p. 2016. [Google Scholar]
- Picard, M.C.; Rodriguez-Uribe, A.; Thimmanagari, M.; Misra, M.; Mohanty, A.K. Sustainable biocomposites from poly (butylene succinate) and apple pomace: A study on compatibilization performance. Waste Biomass Valoriz. 2020, 11, 3775–3787. [Google Scholar] [CrossRef]
- Gouw, V.P.; Jung, J.; Simonsen, J.; Zhao, Y. Fruit pomace as a source of alternative fibers and cellulose nanofiber as reinforcement agent to create molded pulp packaging boards. Compos. Part A Appl. Sci. Manuf. 2017, 99, 48–57. [Google Scholar] [CrossRef]
- Park, J.Y.; Salmeron, M. Fundamental aspects of energy dissipation in friction. Chem. Rev. 2014, 114, 677–711. [Google Scholar] [CrossRef] [PubMed]
- Schmid, V.; Trabert, A.; Schäfer, J.; Bunzel, M.; Karbstein, H.P.; Emin, M.A. Modification of apple pomace by extrusion processing: Studies on the composition, polymer structures, and functional properties. Foods 2020, 9, 1385. [Google Scholar] [CrossRef] [PubMed]
- Guy, R. (Ed.) Extrusion Cooking: Technologies and Applications; Woodhead Publishing: Sawston, UK, 2001; Volume 61. [Google Scholar]
- Choudhary, P.; Suriyamoorthy, P.; Moses, J.A.; Anandharamakrishnan, C. Bio-composites from food wastes. Compos. Environ. Eng. 2019, 319–345. [Google Scholar] [CrossRef]
- Vanier, N.L.; Vamadevan, V.; Bruni, G.P.; Ferreira, C.D.; Pinto, V.Z.; Seetharaman, K.; Zavareze, E.D.; Elias, M.C.; Berrios, J.D.J. Extrusion of rice, bean and corn starches: Extrudate structure and molecular changes in amylose and amylopectin. J. Food Sci. 2016, 81, E2932–E2938. [Google Scholar] [CrossRef]
- Gustafsson, J.; Landberg, M.; Bátori, V.; Åkesson, D.; Taherzadeh, M.J.; Zamani, A. Development of Bio-Based Films and 3D Objects from Apple Pomace. Polymers 2019, 11, 289. [Google Scholar] [CrossRef] [PubMed]
- Zelazinski, T. Properties of Biocomposites from Rapeseed Meal, Fruit Pomace and Microcrystalline Cellulose Made by Press Pressing. Materials 2021, 14, 890. [Google Scholar] [CrossRef]
- PN-EN ISO 178:2019-06; Plastics—Determination of Bending Properties. Polish Committee for Standardization: Warsaw, Poland, 2019.
- ASTM D 792-13; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. American Society for Testing and Materials: West Conshohocken, PA, USA, 2013.
- Gonzalez-Tomás, L.; Coll-Marqués, J.; Costell, E. Viscoelasticity of inulin–starch-based dairy systems. Influence of inulin average chain length. Food Hydrocoll. 2008, 22, 1372–1380. [Google Scholar] [CrossRef]
- Jia, T.; Zeng, J.; Gao, H.; Jiang, J.; Zhao, J.; Su, T.; Sun, J. Effect of pectin on properties of potato starch after dry heat treatment. Trop. J. Pharm. Res. 2019, 18, 1375–1384. [Google Scholar] [CrossRef]
- Shpigelman, A.; Kyomugasho, C.; Christiaens, S.; Van Loey, A.M.; Hendrickx, M.E. Thermal and high pressure high temperature processes result in distinctly different pectin non-enzymatic conversions. Food Hydrocoll. 2014, 39, 251–263. [Google Scholar] [CrossRef]
- Su, J.F.; Huang, Z.; Yuan, X.Y.; Wang, X.Y.; Li, M. Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydr. Polym. 2010, 79, 145–153. [Google Scholar] [CrossRef]
- Lang, C.V.; Wang, T.; Zhao, Y. Investigation of eco-friendly chemical treatments of apple pomace for producing high quality molded pulp biocomposite. J. Appl. Polym. Sci. 2021, 138, 51363. [Google Scholar] [CrossRef]
- Rahman, A.; Fehrenbach, J.; Ulven, C.; Simsek, S.; Hossain, K. Utilization of wheat-bran cellulosic fibers as reinforcement in bio-based polypropylene composite. Ind. Crops Prod. 2021, 172, 114028. [Google Scholar] [CrossRef]
- Sjöqvist, M.; Gatenholm, P. Effect of water content in potato amylopectin starch on microwave foaming process. J. Polym. Environ. 2007, 15, 43–50. [Google Scholar] [CrossRef]
- Grylewicz, A.; Spychaj, T.; Zdanowicz, M. Thermoplastic starch/wood biocomposites processed with deep eutectic solvents. Compos. Part A Appl. Sci. Manuf. 2019, 121, 517–524. [Google Scholar] [CrossRef]
- Bastos, D.C.; Santos, A.E.; da Silva, M.L.; Simão, R.A. Hydrophobic corn starch thermoplastic films produced by plasma treatment. Ultramicroscopy 2009, 109, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C.T.; Simão, R.A.; Thiré, R.M.; Achete, C.A. Surface modification of maize starch films by low-pressure glow 1-butene plasma. Carbohydr. Polym. 2005, 61, 407–413. [Google Scholar] [CrossRef]
- Lang, C.V.; Jung, J.; Wang, T.; Zhao, Y. Investigation of mechanisms and approaches for improving hydrophobicity of molded pulp biocomposites produced from apple pomace. Food Bioprod. Process. 2022, 133, 1–15. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Y.; Yuan, H.; Su, M.; Shao, C.; Liu, C.; Guo, Z.; Shen, C.; Liu, X. Simple fabrication of superhydrophobic PLA with honeycomb-like structures for high-efficiency oil-water separation. Chin. Chem. Lett. 2020, 31, 365–368. [Google Scholar] [CrossRef]
- Ortega-Toro, R.; López-Córdoba, A.; Avalos-Belmontes, F. Epoxidised sesame oil as a biobased coupling agent and plasticiser in polylactic acid/thermoplastic yam starch blends. Heliyon 2021, 7, e01776. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Gong, L.; Qu, Z.; Hao, P.; Liu, J.; Fu, L. Wettability enhancement of hydrophobic artificial sandstones by using the pulsed microwave plasma jet. Colloid Interface Sci. Commun. 2020, 36, 100266. [Google Scholar] [CrossRef]
- Lopez, O.; Garcia, M.A.; Villar, M.A.; Gentili, A.; Rodriguez, M.S.; Albertengo, L. Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT-Food Sci. Technol. 2014, 57, 106–115. [Google Scholar] [CrossRef]
- Liu, Y.; Chao, C.; Yu, J.; Wang, S.; Wang, S.; Copeland, L. New insights into starch gelatinization by high pressure: Comparison with heat-gelatinization. Food Chem. 2020, 318, 126493. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.M.; Diep, T.M.H.; da Silva, Y.F.; Vu, T.N.; Hoang, D.; Thuc, C.N.H.; Bui, Q.B.; Perré, P. Three-dimensional pore characterization of poly (lactic) acid/bamboo biodegradable panels. Int. J. Biol. Macromol. 2022, 221, 16–24. [Google Scholar] [CrossRef]
- Mohd Basri, M.S.; Abdul Karim Shah, N.N.; Sulaiman, A.; Mohamed Amin Tawakkal, I.S.; Mohd Nor, M.Z.; Ariffin, S.H.; Abdul Ghani, N.H.; Mohd Salleh, F.S. Progress in the valorization of fruit and vegetable wastes: Active packaging, biocomposites, by-products, and innovative technologies used for bioactive compound extraction. Polymers 2021, 13, 3503. [Google Scholar] [CrossRef] [PubMed]
- Mofokeng, J.P.; Luyt, A.S.; Tábi, T.; Kovács, J. Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. J. Thermoplast. Compos. Mater. 2012, 25, 927–948. [Google Scholar] [CrossRef]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Biodegradable biocomposites from poly (butylene adipate-co-terephthalate) and miscanthus: Preparation, compatibilization, and performance evaluation. J. Appl. Polym. Sci. 2017, 134, 45448. [Google Scholar] [CrossRef]
- Kamdem, D.P.; Shen, Z.; Nabinejad, O.; Shu, Z. Development of biodegradable composite chitosan-based films incorporated with xylan and carvacrol for food packaging application. Food Packag. Shelf. Life 2019, 21, 100344. [Google Scholar] [CrossRef]
- Lin, Z.; Renneckar, S.; Hindman, D.P. Nanocomposite-based lignocellulosic fibers 1. Thermal stability of modified fibers with clay-polyelectrolyte multilayers. Cellulose 2007, 15, 333. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Ekielski, A.; Żelaziński, T.; Mishra, P.K.; Skudlarski, J. Properties of biocomposites produced with thermoplastic starch and digestate: Physicochemical and mechanical characteristics. Materials 2021, 14, 6092. [Google Scholar] [CrossRef] [PubMed]
- Eleutério, T.; Sério, S.; Teodoro, O.M.; Bundaleski, N.; Vasconcelos, H.C. XPS and FTIR studies of DC reactive magnetron sputtered TiO2 thin films on natural based-cellulose fibers. Coatings 2020, 10, 287. [Google Scholar] [CrossRef]
- Nagasaki, A.; Matsuba, G.; Ikemoto, Y.; Moriwaki, T.; Ohta, N.; Osaka, K. Analysis of the sol and gel structures of potato starch over a wide spatial scale. Food Sci. Nutr. 2021, 9, 4916–4926. [Google Scholar] [CrossRef]
- Fardioui, M.; Mekhzoum, M.E.M.; Bouhfid, R. Photoluminescent biocomposite films of chitosan based on styrylbenzothiazolium-g-cellulose nanocrystal for anti-counterfeiting applications. Int. J. Biol. Macromol. 2021, 184, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of extrusion technology in plant food processing byproducts: An overview. Compr. Rev. Food Sci. Food Saf. 2020, 19, 218–246. [Google Scholar] [CrossRef] [PubMed]
- Angellier-Coussy, H.; Kemmer, D.; Gontard, N.; Peyron, S. Physical–chemical and structural stability of PHBV/wheat straw fibers based biocomposites under food contact conditions. J. Appl. Polym. Sci. 2020, 137, 49231. [Google Scholar] [CrossRef]
- Witczak, T.; Stępień, A.; Gumul, D.; Witczak, M.; Fiutak, G.; Zięba, T. The influence of the extrusion process on the nutritional composition, physical properties and storage stability of black chokeberry pomaces. Food Chem. 2021, 334, 127548. [Google Scholar] [CrossRef]
- Lu, M.M.; Fuentes, C.A.; Van Vuure, A.W. Moisture sorption and swelling of flax fibre and flax fibre composites. Compos. Part B Eng. 2022, 231, 109538. [Google Scholar] [CrossRef]
- da Silva, A.M.B.; Martins, A.B.; Santana, R.M.C. Biodegradability studies of lignocellulosic fiber reinforced composites. In Fiber Reinforced Composites; Woodhead Publishing: Sawston, UK, 2021; pp. 241–271. [Google Scholar]
- Merino, D.; Athanassiou, A. Thermomechanical Plasticization of Fruits and Vegetables Processing Byproducts for the Preparation of Bioplastics. Adv. Sustain. Syst. 2023, 7, 2300179. [Google Scholar] [CrossRef]
Sample Number | Index * | Apple Pomace (EAP) [wt%] | Starch [wt%] | Moisture [%] |
---|---|---|---|---|
1 | p60_s40_m10 | 60 | 40 | 10 |
2 | p70_s30_m10 | 70 | 30 | 10 |
3 | p80_s20_m10 | 80 | 20 | 10 |
4 | p90_s10_m10 | 90 | 10 | 10 |
5 | p100_s0_m10 | 100 | 0 | 10 |
6 | p60_s40_m12 | 60 | 40 | 12 |
7 | p70_s30_m12 | 70 | 30 | 12 |
8 | p80_s20_m12 | 80 | 20 | 12 |
9 | p90_s10_m12 | 90 | 10 | 12 |
10 | p100_s0_m12 | 100 | 0 | 12 |
11 | p60_s40_m14 | 60 | 40 | 14 |
12 | p70_s30_m14 | 70 | 30 | 14 |
13 | p80_s20_m14 | 80 | 20 | 14 |
14 | p90_s10_m14 | 90 | 10 | 14 |
15 | p100_s0_m14 | 100 | 0 | 14 |
Source of Variation | Bending Strength (MPa); R2= 0.762; Pure error MS = 0.848 | |||||
---|---|---|---|---|---|---|
SS | df | MS | F | p | ||
1, Moisture (%) | L | 12.908 | 1 | 12.908 | 15.218 * | 0.0005 |
Moisture (%) | Q | 8.500 | 1 | 8.500 | 10.022 * | 0.0035 |
2, Starch (wt%) | L | 74.721 | 1 | 74.721 | 88.093 * | 0.0000 |
Starch (wt%) | Q | 5.800 | 1 | 5.800 | 6.838 * | 0.0138 |
Interaction of 1 L vs. 2 L | 4.375 | 1 | 4.375 | 5.158 * | 0.0305 | |
Lack of fit | 7.713 | 9 | 0.857 | 1.010 | 0.4537 | |
Pure error | 25.446 | 30 | 0.848 | |||
Total SS | 139.463 | 44 | ||||
Young’s modulus (MPa); R2= 0.871; Pure error MS = 00036 | ||||||
1, Moisture (%) | L | 0.002 | 1 | 0.002 | 5.509 * | 0.0257 |
Moisture (%) | Q | 0.027 | 1 | 0.027 | 74.898 * | 0.0000 |
2, Starch (wt%) | L | 0.565 | 1 | 0.565 | 1573.495 * | 0.0000 |
Starch (wt%) | Q | 0.050 | 1 | 0.050 | 138.238 * | 0.0000 |
Interaction of 1 L vs. 2 L | 0.005 | 1 | 0.005 | 14.932 * | 0.0006 | |
Lack of fit | 0.086 | 9 | 0.001 | 26.562 * | 0.0000 | |
Pure error | 0.011 | 30 | 0.0004 | |||
Total SS | 0.74 | 44 | ||||
Density (g·cm−1); R2 = 0.712; Pure error MS = 0.000839 | ||||||
1, Moisture (%) | L | 0.0491 | 1 | 0.0491 | 58.4716 * | 0.0000 |
Moisture (%) | Q | 0.000001 | 1 | 0.000001 | 0.00138 | 0.9706 |
2, Starch (wt%) | L | 0.0111 | 1 | 0.0111 | 13.2115 * | 0.0010 |
Starch (wt%) | Q | 0,0011 | 1 | 0.0011 | 1.2858 | 0.2658 |
Interaction of 1 L vs. 2 L | 0.0175 | 1 | 0.017 | 20.8718 * | 0.0001 | |
Lack of fit | 0.0246 | 9 | 0.0027 | 3.2555 * | 0.0071 | |
Pure error | 0.0252 | 30 | 0.0008 | |||
Total SS | 0.1286 | 44 | ||||
Water contact angle (°); R2 = 0.881; Pure error MS = 0.866 | ||||||
1, Moisture (%) | L | 173.761 | 1 | 173.761 | 220.634 * | 0.0000 |
Moisture (%) | Q | 67.254 | 1 | 67.254 | 85.396 * | 0.0000 |
2, Starch (wt%) | L | 6201.760 | 1 | 6201.760 | 7874.695 * | 0.0000 |
Starch (wt%) | Q | 333.206 | 1 | 333.206 | 423.089 * | 0.0000 |
Interaction of 1 L vs. 2 L | 231.673 | 1 | 231.673 | 294.168 * | 0.0000 | |
Lack of fit | 924.457 | 9 | 102.717 | 130.426 * | 0.0000 | |
Pure error | 23.627 | 30 | 0.788 | |||
Total SS | 7955.739 | 44 | ||||
L*; R2= 0.732; Pure error MS = 0.055 | ||||||
1, Moisture (%) | L | 0.702 | 1 | 0.702 | 2.330 | 0.1366 |
Moisture (%) | Q | 18.432 | 1 | 18.432 | 61.457 * | 0.0000 |
2, Starch (wt%) | L | 30.769 | 1 | 30.769 | 102.592 * | 0.0000 |
Starch (wt%) | Q | 1.165 | 1 | 1.165 | 3.886 | 0.0579 |
Interaction of 1 L vs. 2 L | 8.853 | 1 | 8.853 | 29.517 * | 0.0000 | |
Lack of fit | 29.492 | 9 | 3.276 | 10.926 * | 0.0000 | |
Pure error | 8.997 | 30 | 0.299 | |||
Total SS | 98.411 | 44 | ||||
a*; R2= 0.719; Pure error MS = 0.00095 | ||||||
1, Moisture (%) | L | 0.197 | 1 | 0.197 | 206.465 * | 0.0000 |
Moisture (%) | Q | 0.188 | 1 | 0.188 | 196.878 * | 0.0000 |
2, Starch (wt%) | L | 5.730 | 1 | 5.730 | 6011.003 * | 0.0000 |
Starch (wt%) | Q | 8.265 | 1 | 8.265 | 8669.272 * | 0.0000 |
Interaction of 1 L vs. 2 L | 0.045 | 1 | 0.045 | 47.596 * | 0.0000 | |
Lack of fit | 5.602 | 9 | 0.622 | 652.913 * | 0.0000 | |
Pure error | 0.029 | 30 | 0.00095 | |||
Total SS | 20.056 | 44 | ||||
b*; R2= 0.711; Pure error MS = 0.0065 | ||||||
1, Moisture (%) | L | 0.853 | 1 | 0.853 | 130.809 * | 0.0000 |
Moisture (%) | Q | 1.439 | 1 | 1.4394 | 220.546 * | 0.0000 |
2, Starch (wt%) | L | 30.543 | 1 | 30.543 | 4681.378 * | 0.0000 |
Starch (wt%) | Q | 0.761 | 1 | 0.761 | 116.587 * | 0.0000 |
Interaction of 1 L vs. 2 L | 0.111 | 1 | 0.111 | 17.004 * | 0.0003 | |
Lack of fit | 13.479 | 9 | 1.498 | 229.550 * | 0.0000 | |
Pure error | 0.196 | 30 | 0.0065 | |||
Total SS | 47.382 | 44 |
Sample | Mass Losses (%) | Temperature at 5% Mass Losses (°C) | Temperature at 50% Mass Losses (°C) | ||||
---|---|---|---|---|---|---|---|
I 30–150 °C | II 150–250 °C | III 250–350 °C | IV 350–600 °C | Total 30–600 °C | |||
p60_s40_m10 | 3.37 | 15.79 | 54.15 | 0 | 73.31 | 166.5 | 314.1 |
p70_s30_m10 | 4.02 | 24.28 | 20.91 | 22.49 | 71.70 | 153.2 | 322.7 |
p80_s20_m10 | 4.22 | 24.77 | 18.85 | 29.13 | 76.97 | 142.1 | 325.6 |
p90_s10_m10 | 3.55 | 26.39 | 14.75 | 26.64 | 71.33 | 158.5 | 330.1 |
p60_s40_m14 | 3.19 | 15.64 | 54.49 | 0 | 73.32 | 171.4 | 301.1 |
p70_s30_m14 | 2.93 | 20.41 | 49.91 | 0 | 73.25 | 158.5 | 315.5 |
p80_s20_m14 | 4.09 | 25.17 | 16.75 | 24.52 | 70.53 | 150.1 | 329.7 |
p90_s10_m14 | 3.71 | 25.69 | 15.88 | 26.30 | 71.58 | 159.3 | 328.1 |
p100_s0_m10 | 4.15 | 32.09 | 33.75 | 0 | 69.99 | 149.3 | 325.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekielski, A.; Żelaziński, T.; Kulig, R.; Kupczyk, A. Properties of Biocomposites Made of Extruded Apple Pomace and Potato Starch: Mechanical and Physicochemical Properties. Materials 2024, 17, 2681. https://doi.org/10.3390/ma17112681
Ekielski A, Żelaziński T, Kulig R, Kupczyk A. Properties of Biocomposites Made of Extruded Apple Pomace and Potato Starch: Mechanical and Physicochemical Properties. Materials. 2024; 17(11):2681. https://doi.org/10.3390/ma17112681
Chicago/Turabian StyleEkielski, Adam, Tomasz Żelaziński, Ryszard Kulig, and Adam Kupczyk. 2024. "Properties of Biocomposites Made of Extruded Apple Pomace and Potato Starch: Mechanical and Physicochemical Properties" Materials 17, no. 11: 2681. https://doi.org/10.3390/ma17112681
APA StyleEkielski, A., Żelaziński, T., Kulig, R., & Kupczyk, A. (2024). Properties of Biocomposites Made of Extruded Apple Pomace and Potato Starch: Mechanical and Physicochemical Properties. Materials, 17(11), 2681. https://doi.org/10.3390/ma17112681