Advancements in Heavy Metal Stabilization: A Comparative Study on Zinc Immobilization in Glass-Portland Cement Binders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Data Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Compressive Strength Evolution
3.3. Fixation Isotherms
3.4. Heat Hydration Evolution
3.5. Mineralogical Properties
- 13.65 < pH
- 6.55 < pH < 13.65
3.6. TG Analyses on Hardened Pastes
3.7. FTIR Analyses
3.8. SEM–EDS Analyses
4. Discussion
5. Conclusions
- The presence of Zn in hydroxide form influences the setting time of Portland cement. Delays in the setting time can occur up to 24 h (for Zn concentrations between 2% and 3% relative to the cement). The presence of glass only influences the setting properties after ~90 days of curing. For shorter hardening times, the reactivity of the glass is lower than that of the cement particles. The high concentration of Zn (from 2%) significantly retarded the hydration of C3S (>40 h).
- The glass aggregates have the capacity to immobilize Zn after 90 days of curing. The glass forms irreversible phases on the layers in contact with the pastes. Stabilization only occurs through inter-diffusion or dissolution in a solid base of GP. TG analysis shows the influence of GP on the formation of hydrated phases, which is crucial for Zn remediation. As such, the presence of glass promotes hydration reactions. SEM–EDS analyses confirmed surface germination reactions, and the chemical analyses confirmed the presence of phases rich in both Zn and Ca.
- The presence of GP provides a new pathway for the fixation of Zn2+. The GP surface can immobilize the metal cation and help the hydration of cement to start gradually.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouchikhi, A.; Benzerzour, M.; Abriak, N.E.; Maherzi, W.; Mamindy-Pajany, Y. Study of the Impact of Waste Glasses Types on Pozzolanic Activity of Cementitious Matrix. Constr. Build. Mater. 2019, 197, 626–640. [Google Scholar] [CrossRef]
- Idir, R.; Cyr, M.; Tagnit-Hamou, A. Use of Fine Glass as ASR Inhibitor in Glass Aggregate Mortars. Constr. Build. Mater. 2010, 24, 1309–1312. [Google Scholar] [CrossRef]
- Lee, H.; Hanif, A.; Usman, M.; Sim, J.; Oh, H. Performance Evaluation of Concrete Incorporating Glass Powder and Glass Sludge Wastes as Supplementary Cementing Material. J. Clean. Prod. 2018, 170, 683–693. [Google Scholar] [CrossRef]
- Ling, T.C.; Poon, C.S.; Wong, H.W. Management and Recycling of Waste Glass in Concrete Products: Current Situations in Hong Kong. Resour. Conserv. Recycl. 2013, 70, 25–31. [Google Scholar] [CrossRef]
- ASTM C1866/C1866M-20; Standard Specification for Ground-Glass Pozzolan for Use in Concrete. ASTM International: Montgomery, PA, USA, 2020. [CrossRef]
- Zidol, A. Durabilité En Milieux Agressifs des Bétons Incorporant la Poudre de Verre; Scientific Research: Sherbrooke, QC, Canada, 2014. [Google Scholar]
- Dali, J.S.; Tande, S.N. Performance of Concrete Containing Mineral Admixtures Subjected to High Temperature. In Proceedings of the 37th Conference on Our World in Concrete and Structures, Singapore, 29–31 August 2012. [Google Scholar]
- Bouchikhi, A.; Mamindy-Pajany, Y.; Maherzi, W.; Albert-Mercier, C.; El-Moueden, H.; Benzerzour, M.; Peys, A.; Abriak, N. Use of Residual Waste Glass in an Alkali-Activated Binder—Structural Characterization, Environmental Leaching Behavior and Comparison of Reactivity. J. Build. Eng. 2020, 34, 101903. [Google Scholar] [CrossRef]
- Bouchikhi, A.; Maherzi, W.; Benzerzour, M.; Mamindy-pajany, Y.; Peys, A. Manufacturing of Low-Carbon Binders Using Waste Glass and Dredged Sediments: Formulation and Performance Assessment at Laboratory Scale. Sustainability 2021, 13, 4960. [Google Scholar] [CrossRef]
- Torres-Carrasco, M.; Puertas, F. Waste Glass in the Geopolymer Preparation. Mechanical and Microstructural Characterisation. J. Clean. Prod. 2015, 90, 397–408. [Google Scholar] [CrossRef]
- Luhar, S.; Cheng, T.W.; Nicolaides, D.; Luhar, I.; Panias, D.; Sakkas, K. Valorisation of Glass Wastes for the Development of Geopolymer Composites—Durability, Thermal and Microstructural Properties: A Review. Constr. Build. Mater. 2019, 222, 673–687. [Google Scholar] [CrossRef]
- El-Kamash, A.M. Evaluation of Zeolite A for the Sorptive Removal of Cs+ and Sr2+ Ions from Aqueous Solutions Using Batch and Fixed Bed Column Operations. J. Hazard. Mater. 2008, 151, 432–445. [Google Scholar] [CrossRef]
- Osmanlioglu, A.E. Treatment of Radioactive Liquid Waste by Sorption on Natural Zeolite in Turkey. J. Hazard. Mater. 2006, 137, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.E. Zeolites and Molecular Sieves: Not Just Ordinary Catalysts. Ind. Eng. Chem. Res. 1991, 30, 1675–1683. [Google Scholar] [CrossRef]
- Katzer, J.R. Atlas of Zeolite Structure Types. W. M. Meier, and D. H. Olson, 2nd Rev. Ed., Butterworth, 1987. AIChE J. 1989, 35, 875. [Google Scholar] [CrossRef]
- Nikolići, I.; Dsignurović, D.; Tadić, M.; Blečić, D.; Radmilović, V. Immobilization of Zinc from Metallurgical Waste and Water Solutions Using Geopolymerization Technology. E3S Web Conf. 2013, 1, 41026. [Google Scholar] [CrossRef]
- Ziegler, F.; Johnson, C.A. The Solubility of Calcium Zincate (CaZn2(OH)6·2H2O). Cem. Concr. Res. 2001, 31, 1327–1332. [Google Scholar] [CrossRef]
- Deschamps, T.; Benzaazoua, M.; Bussière, B.; Belem, T.; Mbonimpa, M. Mécanismes de Rétention Des Métaux Lourds En Phase Solide: Cas de La Stabilisation Des Sols Contaminés et Des Déchets Industriels. VertigO 2006, 7. [Google Scholar] [CrossRef]
- Shi, C.; Fernández-Jiménez, A. Stabilization/Solidification of Hazardous and Radioactive Wastes with Alkali-Activated Cements. J. Hazard. Mater. 2006, 137, 1656–1663. [Google Scholar] [CrossRef] [PubMed]
- Arliguie, G.; Grandet, J. Influence de la Composition D’un Ciment Portland Sur Son Hydratation en Presence de Zinc. Cem. Concr. Res. 1990, 20, 517–524. [Google Scholar] [CrossRef]
- Hills, C.D.; Pollard, S.J.T. The Influence of Interference Effects on the Mechanical, Microstructural and Fixation Characteristics of Cement-Solidified Hazardous Waste Forms. J. Hazard. Mater. 1997, 52, 171–191. [Google Scholar] [CrossRef]
- El-Eswed, B.I. Solidification Versus Adsorption for Immobilization of Pollutants in Geopolymeric Materials: A Review. In Solidification; IntechOpen: London, UK, 2016; Volume i, p. 13. [Google Scholar] [CrossRef]
- Moudilou, E. Cinetiques et Mecanismes de Relargage des Metaux Lourds Presents en Traces dans les Matrices Cimentaires. Ph.D. Thesis, Université d’Orléans, Orléans, France, 2003. [Google Scholar]
- Gineys, N.; Aouad, G.; Damidot, D. Managing Trace Elements in Portland Cement—Part I: Interactions between Cement Paste and Heavy Metals Added during Mixing as Soluble Salts. Cem. Concr. Compos. 2010, 32, 563–570. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P. Immobilisation of Heavy Metal in Cement-Based Solidification/Stabilisation: A Review. Waste Manag. 2009, 29, 390–403. [Google Scholar] [CrossRef] [PubMed]
- Abdulhussein Saeed, K.; Anuar Kassim, K.; Eisazadeh, A. Interferences of Cement Based-Solidification/Stabilization and Heavy Metals: A Review. Electron. J. Geotech. Eng. 2012, 17, 2555–2565. [Google Scholar]
- Panfili, F. Etude de l’évolution de La Spéciation Du Zinc Dans La Phase Solide d’un Sédiment de Curage Contamine. Ph.D. Thesis, Université de Provence, Aix-Marseille, France, 2016. [Google Scholar]
- Moulin, I.; Stone, W.E.E.; Sanz, J.; Bottero, J.Y.; Mosnier, F.; Haehnel, C. Lead and Zinc Retention during Hydration of Tri-Calcium Silicate: A Study by Sorption Isotherms and 29Si Nuclear Magnetic Resonance Spectroscopy. Langmuir 1999, 15, 2829–2835. [Google Scholar] [CrossRef]
- ISO 13320; Particle Size Analysis—Laser Diffraction Methods. International Organization for Standardization: Geneva, Switzerland, 2020.
- NF EN 196-1; Methods of Testing Cement—Part 1: Determination of Strength. AFNOR: Ile-de-France, France, 2016.
- NF EN 1097-7; Tests for Mechanical and Physical Properties of Aggregates—Part 7: Determination of the Particle Density of Filler—Pyknometer Method. AFNOR: Ile-de-France, France, 2022.
- NF EN ISO 18757; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Determination of Specific Surface Area of Ceramic Powders by Gas Adsorption Using the BET Method. AFNOR: Ile-de-France, France, 2006.
- NF EN ISO 17892-12; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 12: Determination of Liquid and Plastic Limits. AFNOR: Ile-de-France, France, 2018.
- NF ISO 15169; Petroleum and Liquid Petroleum Products—Determination of Volume, Density and Mass of the Hydrocarbon Content of Vertical Cylindrical Tanks by Hybrid Tank Measurement Systems. AFNOR: Ile-de-France, France, 2004.
- Snellings, R.; Cizer, Ö.; Horckmans, L.; Durdzi, T.; Dierckx, P.; Nielsen, P.; Van Balen, K.; Vandewalle, L. Applied Clay Science Properties and Pozzolanic Reactivity of Fl Ash Calcined Dredging Sediments. Appl. Clay Sci. 2016, 129, 35–39. [Google Scholar] [CrossRef]
- Fernández Olmo, I.; Chacon, E.; Irabien, A. Influence of Lead, Zinc, Iron (III) and Chromium (III) Oxides on the Setting Time and Strength Development of Portland Cement. Cem. Concr. Res. 2001, 31, 1213–1219. [Google Scholar] [CrossRef]
- Deschamps, T. Étude Du Comportement Physique Et Hydrogéochimique D’Un Dépôt De Résidus Miniers En Pâte Dans Des Conditions De Surface. Ph.D. Thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 2009. [Google Scholar]
- Brault, S. Modélisation Du Comportement à La Lixiviation à Long Terme de Déchets Stabilisés à l’aide de Liants Hydrauliques. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 2001. [Google Scholar]
- Ziegler, F.; Scheidegger, A.M.; Johnson, C.A.; Dáhn, R.; Wieland, E. Sorption Mechanisms of Zinc to Calcium Silicate Hydrate: X-Ray Absorption Fine Structure (XAFS) Investigation. Environ. Sci. Technol. 2001, 35, 1550–1555. [Google Scholar] [CrossRef] [PubMed]
- Kakali, G.; Tsivilis, S.; Tsialtas, A. Hydration of Ordinary Portland Cements Made from Raw Mix Containing Transition Element Oxides. Cem. Concr. Res. 1998, 28, 335–340. [Google Scholar] [CrossRef]
- McWhinney, H.; Cocke, D.L.; Yu, G.S. Solidification of Hazardous Substances-a Tga and Ftir Study of Portland Cement Containing Metal Nitrates. J. Environ. Sci. Health Part A Environ. Sci. Eng. 1989, 24, 589–602. [Google Scholar] [CrossRef]
- Arliguie, G.; Ollivier, J.P.; Grandet, J. Etude de l’effet Retardateur Du Zinc Sur l’hydratation de La Pate de Ciment Portland. Cem. Concr. Res. 1982, 12, 79–86. [Google Scholar] [CrossRef]
- Šiler, P.; Kolárová, I.; Másilko, J.; Novotný, R.; Opravil, T. The Effect of Zinc on the Portlands Cement Hydration. Key Eng. Mater. 2018, 761, 131–134. [Google Scholar] [CrossRef]
- Li, S.; Zhou, Y. Preparation of Tetragonal and Hexagonal Calcium Zincate. Appl. Mech. Mater. 2012, 130–134, 1454–1457. [Google Scholar] [CrossRef]
- Farcas, F.; Touzé, P. La Spectrométrie Infrarouge à Transformée de Fourier (IRTF). Bull. Lab. Ponts Chaussées 2001, 230, 77–88. [Google Scholar]
- Shangguan, E.; Li, L.; Wu, C.; Fu, P.; Wang, M.; Li, L.; Zhao, L.; Wang, G.; Li, Q.; Li, J. Microemulsion Synthesis of 3D Flower-like Calcium Zincate Anode Materials with Superior High-Rate and Cycling Property for Advanced Zinc-Based Batteries. J. Alloys Compd. 2021, 853, 156965. [Google Scholar] [CrossRef]
- Reddy, V.A.; Solanki, C.H.; Kumar, S.; Reddy, K.R.; Du, Y.J. New Ternary Blend Limestone Calcined Clay Cement for Solidification/Stabilization of Zinc Contaminated Soil. Chemosphere 2019, 235, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, T.; Jiao, H.; Wang, Y.; Li, H. Potential Effect of Porosity Evolution of Cemented Paste Backfill on Selective Solidification of Heavy Metal Ions. Int. J. Environ. Res. Public Health 2020, 17, 814. [Google Scholar] [CrossRef] [PubMed]
Parameters | GP | CEM | Standard/Method | |
---|---|---|---|---|
Physical Properties | Absolute density (g/cm3) | 2.54 | 3.15 | NF EN 1097-7 [31] |
SSA BET (m2/kg) | 793 | 835 | NF EN ISO18757 [32] | |
Fire loss % (450 °C/3 h) | 0.02 | – | NF EN ISO 17892-12 [33] | |
Fire loss % (550 °C/1 h) | 0.03 | – | NF EN 15169 [34] | |
Fire loss % (1000 °C/1 h) | – | 0.30 | NF EN 1097-7 [31] | |
Chemical Composition wt.% | SiO2 | 70.8 | 17.4 | measured by XRF |
Al2O3 | 1.70 | 4.44 | ||
MgO | 1.20 | 0.85 | ||
Fe2O3 | 0.40 | 2.97 | ||
CaO | 11.5 | 60.7 | ||
Na2O | 13.0 | 0.31 | ||
K2O | 0.70 | 1.16 | ||
SO3 | – | 3.75 | ||
Others | 0.01 | 0.90 |
Zn/Binder w% | Y = Log(Qt) | Log(kd) | kd | R2 | |
---|---|---|---|---|---|
Reference Mortar | 0.25% | y = −0.46x − 2.82 | −2.82 | 1.50 × 10−3 | 0.98 |
0.50% | y = −0.46x − 2.44 | −2.44 | 3.64 × 10−3 | 0.98 | |
1% | y= −0.36x − 2.24 | −2.24 | 5.75 × 10−3 | 0.88 | |
2% | y = −0.40x − 1.57 | −1.57 | 2.70 × 10−2 | 0.97 | |
3% | y = −0.49x − 1.29 | −1.29 | 5.13 × 10−2 | 0.99 | |
Blended Mortar | 0.25% | y = −0.64x − 2.34 | −2.34 | 4.53 × 10−3 | 0.98 |
0.50% | y = −0.50x − 2.07 | −2.07 | 8.47 × 10−3 | 0.78 | |
1% | y = −0.51x − 1.81 | −1.81 | 1.55 × 10−2 | 0.98 | |
2% | y = −0.60x − 1.22 | −1.22 | 6.00 × 10−2 | 0.99 | |
3% | y = −0.60x − 1.00 | −1.00 | 9.88 × 10−2 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouchikhi, A.; Safhi, A.e.M.; Maherzi, W.; Mamindy-Pajany, Y.; Kunther, W.; Benzerzour, M.; Abriak, N.-E. Advancements in Heavy Metal Stabilization: A Comparative Study on Zinc Immobilization in Glass-Portland Cement Binders. Materials 2024, 17, 2867. https://doi.org/10.3390/ma17122867
Bouchikhi A, Safhi AeM, Maherzi W, Mamindy-Pajany Y, Kunther W, Benzerzour M, Abriak N-E. Advancements in Heavy Metal Stabilization: A Comparative Study on Zinc Immobilization in Glass-Portland Cement Binders. Materials. 2024; 17(12):2867. https://doi.org/10.3390/ma17122867
Chicago/Turabian StyleBouchikhi, Abdelhadi, Amine el Mahdi Safhi, Walid Maherzi, Yannick Mamindy-Pajany, Wolfgang Kunther, Mahfoud Benzerzour, and Nor-Edine Abriak. 2024. "Advancements in Heavy Metal Stabilization: A Comparative Study on Zinc Immobilization in Glass-Portland Cement Binders" Materials 17, no. 12: 2867. https://doi.org/10.3390/ma17122867
APA StyleBouchikhi, A., Safhi, A. e. M., Maherzi, W., Mamindy-Pajany, Y., Kunther, W., Benzerzour, M., & Abriak, N. -E. (2024). Advancements in Heavy Metal Stabilization: A Comparative Study on Zinc Immobilization in Glass-Portland Cement Binders. Materials, 17(12), 2867. https://doi.org/10.3390/ma17122867