Effects of Heat Input and Intertrack Overlap on the Microstructure and Properties of Inconel 686 Weld Overlays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of the Experiment
2.3. Microstructure Analysis
2.4. Thermo-Calc Analysis
2.5. Microhardness Measurement
3. Results and Discussion
3.1. Welding Geometries and Dilution
3.2. Microstructural Evolution
3.2.1. The Base Metal—Heat-Affected Zone
3.2.2. The Weld Metal—Dendrite Arm Spacing and Cooling Rate
3.2.3. The Weld Metal—Secondary Phase Formation
3.3. Thermo-Calc Simulation
3.4. Hardness Measurement
4. Conclusions
- Although reducing the weld overlap from 1/2 (OH) to 1/3 (OT) can decrease the required number of weld tracks in the overlay on a substrate (e.g., from 12 to 10 in the current study), less overlapping increases the level of dilution and intermetallic phase formation. Therefore, weld overlapping at 1/2 (i.e., 4–5 kJ·cm−1) results in better weld overlay properties than overlapping at 1/3.
- The microstructure evolution is strongly influenced by the weld parameters and overlap through the corresponding level of dilution and cooling rate. In general, greater levels of dilution led to a greater volume fraction and larger size of intermetallic/interdendritic phases.
- Increasing the heat input increases the Fe dilution from the base metal into the weld metal, as well as reduces the cooling rate and consequently increases the DAS. This leads to greater Cr and Mo microsegregation in the interdendritic regions and the formation of a higher fraction of intermetallic phases. Although shorter weld overlaps (1/3) increased the cooling rates (at the weld interface), it also induced higher Fe dilution, which consequently doubled the TCP phases volume fraction in the IN686 overlays.
- The specific phase evolution at the end of solidification depends on both the heat input and the track overlap. Variations in the volume fraction, particle size, and chemical composition were measured for different weld overlay conditions. The Thermo-Calc predictions indicated that these particles are likely the P-, σ-, and µ- type TCP phases.
- As a result of the elevated dilution of the weld metal (i.e., increased Fe content due to the diffusion and mixing in the molten weld pool), the hardness of the overlay was less than the HAZ, and HAZ 1 was significantly harder than the base metal due to high cooling rates. Lastly, increasing the heat input reduced the HAZ hardness but increased overall HAZ thickness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tayactac, R.G.; Ang, E.B.O. A Review of Corrosion Resistance Alloy Weld Overlay Cladding Material for Geothermal Applications. Mater. Sci. Forum 2021, 1047, 120–127. [Google Scholar] [CrossRef]
- Kumar Saha, M.; Das, S. Gas Metal Arc Weld Cladding and its Anti-Corrosive Performance—A Brief Review. Athens J. Τechnol. Eng. 2018, 5, 155–174. [Google Scholar] [CrossRef]
- Wang, S.H.; Jiang, J.; Tadic, D.; McKinnell’s, J. Weld Cladding for Mining and Mineral Processing: A Canadian Perspective. CWA J. 2016, 8, 52–66. [Google Scholar]
- Adamiec, P.; Adamiec, J. Aspects of pad welding of waste-incinerator boiler-elements with Inconel 625 and 686 alloys. Weld. Int. 2007, 21, 190–194. [Google Scholar] [CrossRef]
- Arulmurugan, B.; Sathishkumar, M.; Gokulkumar, K.; Mageshkumar, K.; Subramani, P.; Venkateshkannan, M.; Manikandan; Arivazhagan. Welding Metallurgy of Corrosion Resistant 21st Century Ni-Based Superalloy 686; Springer International Publishing: Cham, Switzerland, 2018; pp. 457–463. [Google Scholar]
- Thornton, C.; Cooper, C. Overmatching superalloy consumable Inco-weld® 686CPT® broadens its applications to include welding super austenitic and superduplex stainless steels. In Stainless Steel World America 2004; KCI Publishing BV: Toronto, ON, Canada, 2004. [Google Scholar]
- Adamiec, J. High temperature corrosion of power boiler components cladded with nickel alloys. Mater. Charact. 2009, 60, 1093–1099. [Google Scholar] [CrossRef]
- Arulmurugan, B.; Manikandan, M. Improvement of Metallurgical and Mechanical Properties of Gas Tungsten arc Weldments of Alloy 686 by Current Pulsing. Trans. Indian Inst. Met. 2018, 71, 2953–2970. [Google Scholar] [CrossRef]
- Silva, C.C.; Afonso, C.R.M.; Ramirez, A.J.; Motta, M.F.; Miranda, H.C.; Farias, J.P. Assessment of microstructure of alloy Inconel 686 dissimilar weld claddings. J. Alloys Compd. 2016, 684, 628–642. [Google Scholar] [CrossRef]
- Volpi, A.; Serra, G. Weld Overlay of Highly Corrosion Resistant Nickel Chromium Molybdenum Alloys, UNS N06059, on Low Alloy Equipment Operating at High Temperature. In ASME 2018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries; ASME: Seattle, WA, USA, 2018. [Google Scholar]
- Miná, É.M.; da Silva, Y.C.; Dille, J.; Silva, C.C. The Effect of Dilution on Microsegregation in AWS ER NiCrMo-14 Alloy Welding Claddings. Metall. Mater. Trans. A 2016, 47, 6138–6147. [Google Scholar] [CrossRef]
- Singh Singhal, T.; Kumar Jain, J. GMAW cladding on metals to impart anti-corrosiveness: Machine, processes and materials. Mater. Today Proc. 2020, 26, 2432–2441. [Google Scholar] [CrossRef]
- Najafi, M.; Moshkbar Bakhshayesh, M.; Farzadi, A. Microstructure and Phase Analysis of Multilayer Ni–Cr–Mo Clad for Corrosion Protection. Trans. Indian Inst. Met. 2021, 74, 1663–1672. [Google Scholar] [CrossRef]
- Tabaie, S.; Greene, T.; Benoit, M.J. Optimization of GMAW process parameters for weld overlay of Inconel 686 superalloy on low-carbon steel. Int. J. Adv. Manuf. Technol. 2023, 127, 4769–4788. [Google Scholar] [CrossRef]
- Xu, P.; Zhu, L.; Xue, P.; Meng, G.; Wang, S.; Yang, Z.; Ning, J.; Lan, Q. Multi-track alternated overlapping model suitable for variable laser cladding process parameters. Surf. Coat. Technol. 2021, 425, 127706. [Google Scholar] [CrossRef]
- DuPont, J.N.; Marder, A.R. Dilution in single pass arc welds. Metall. Mater. Trans. B 1996, 27, 481–489. [Google Scholar] [CrossRef]
- ASTM E1245-03; ASTM, Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis. ASTM: West Conshohocken, PA, USA, 2016.
- Allen, D.J.; Earl, C. Effects of overlap and deposition technique on weld-bead shape. Met. Technol. 1984, 11, 242–248. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, B.; Li, J. Microstructural Evolution with a Wide Range of Solidification Cooling Rates in a Ni-Based Superalloy. Metall. Mater. Trans. A 2013, 44, 1641–1644. [Google Scholar] [CrossRef]
- Manikandan, S.G.K.; Sivakumar, D.; Rao, K.P.; Kamaraj, M. Effect of weld cooling rate on Laves phase formation in Inconel 718 fusion zone. J. Mater. Process. Technol. 2014, 214, 358–364. [Google Scholar] [CrossRef]
- Rozmus-Górnikowska, M.; Cieniek, Ł.; Blicharski, M.; Kusiński, J. Microstructure and Microsegregation of an Inconel 625 Weld Overlay Produced on Steel Pipes by the Cold Metal Transfer Technique. Arch. Metall. Mater. 2014, 59, 1081–1084. [Google Scholar] [CrossRef]
- Maltin, C.A.; Galloway, A.M.; Mweemba, M. Microstructural Evolution of Inconel 625 and Inconel 686CPT Weld Metal for Clad Carbon Steel Linepipe Joints: A Comparator Study. Metall. Mater. Trans. A 2014, 45, 3519–3532. [Google Scholar] [CrossRef]
- Lloyd, A.C.; Noël, J.J.; McIntyre, S.; Shoesmith, D.W. Cr, Mo and W alloying additions in Ni and their effect on passivity. Electrochim. Acta 2004, 49, 3015–3027. [Google Scholar] [CrossRef]
- Turchi, P.E.A.; Kaufman, L.; Liu, Z.-K. Modeling of Ni–Cr–Mo based alloys: Part I—Phase stability. Calphad 2006, 30, 70–87. [Google Scholar] [CrossRef]
- Alano, J.H.; Siqueira, R.L.; de Oliveira, A.D.; dos Santos Vacchi, G.; Della Rovere, C.A.; Kuri, S.E. Effect of TCP phase formation on the electrochemical corrosion behavior of the nickel-based superalloy UNS N26455. Corros. Sci. 2020, 177, 108965. [Google Scholar] [CrossRef]
- Pan, Y.M.; Dunn, D.S.; Cragnolino, G.A. Topologically close-packed phase precipitation and thermal stability in alloy 22. Metall. Mater. Trans. A 2005, 36, 1143–1151. [Google Scholar] [CrossRef]
- Hayes, J.R.; Gray, J.J.; Szmodis, A.W.; Orme, C.A. Influence of Chromium and Molybdenum on the Corrosion of Nickel-Based Alloys. Corrosion 2006, 62, 491–500. [Google Scholar] [CrossRef]
- Miná, É.M.; da Silva, Y.C.; Motta, M.F.; de Miranda, H.C.; Dille, J.; Silva, C.C. Electron detection modes comparison for quantification of secondary phases of Inconel 686 weld metal. Mater. Charact. 2017, 133, 10–16. [Google Scholar] [CrossRef]
- Cieslak, M.J.; Headley, T.J.; Romig, A.D. The welding metallurgy of HASTELLOY alloys C-4, C-22, and C-276. Metall. Trans. A 1986, 17, 2035–2047. [Google Scholar] [CrossRef]
- Turchi, P.E.A.; Kaufman, L.; Liu, Z.-K. Modeling of Ni–Cr–Mo based alloys: Part II—Kinetics. Calphad 2007, 31, 237–248. [Google Scholar] [CrossRef]
Materials | Ni | Fe | Al | Mn | C | Cr | Mo | Ti | W | Si | Cu | S | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inconel 686 (Filler wire) | Bal. | 0.28 | 0.27 | 0.27 | 0.007 | 20.50 | 16.4 | 0.09 | 3.60 | 0.05 | 0.01 | <0.001 | 0.001 |
SA516-Gr.70 (Substrate) | 0.160 | Bal. | - | 1.184 | 0.157 | 0.170 | - | 0.002 | - | 0.343 | 0.131 | 0.002 | 0.012 |
Sample | V (V) | TS (cm/min) | HI (kJ/cm) |
---|---|---|---|
OH4.53 & OT4.53 | 19 | 40.6 | 4.53 |
OH4.03 & OT4.03 | 19 | 45.7 | 4.03 |
OH3.62 & OT3.62 | 19 | 50.8 | 3.62 |
OH5.25 & OT5.25 | 22 | 40.6 | 5.25 |
OH4.66 & OT4.66 | 22 | 45.7 | 4.66 |
OH4.20 & OT4.20 | 22 | 50.8 | 4.20 |
OH5.97 & OT5.97 | 25 | 40.6 | 5.97 |
OH5.30 & OT5.30 | 25 | 45.7 | 5.30 |
OH4.77 & OT4.77 | 25 | 50.8 | 4.77 |
S# | HI (kJ/cm) | BW (mm) | P (mm) | R (mm) | HAZ (mm) | dg (%) | dc (%) |
---|---|---|---|---|---|---|---|
Overlap 1/2 | |||||||
OH3.62 | 3.62 | 12.5 ± 0.20 | 0.25 | 2.50 | 1.82 | 6.01 | 5.26 |
OH4.77 | 4.77 | 13.1 ± 0.26 | 0.48 | 2.95 | 2.30 | 8.34 | 7.76 |
OH5.97 | 5.97 | 12.7 ± 0.17 | 0.63 | 3.40 | 2.90 | 13.63 | 11.21 |
Overlap 1/3 | |||||||
OT3.62 | 3.62 | 11.9 ± 0.18 | 0.36 | 2.70 | 1.82 | 8.38 | 7.30 |
OT4.77 | 4.77 | 12.1 ± 0.23 | 0.60 | 2.40 | 2.20 | 15.39 | 14.33 |
OT5.97 | 5.97 | 12.0 ± 0.18 | 0.60 | 2.85 | 2.80 | 14.03 | 14.29 |
S# | Bottom of Weld Metal | Top of Weld Metal | ||
---|---|---|---|---|
Vf (%) | Size (μm) | Vf (%) | Size (μm) | |
Overlap 1/2 | ||||
OH3.62 | 0.82 ± 0.13 | 0.65 ± 0.20 | 1.29 ± 0.08 | 1.22 ± 0.26 |
OH4.77 | 1.37 ± 0.05 | 1.02 ± 0.26 | 1.49 ± 0.06 | 1.49 ± 0.06 |
OH5.97 | 1.65 ± 0.21 | 1.34 ± 0.43 | 1.92 ± 0.18 | 1.92 ± 0.18 |
Overlap 1/3 | ||||
OT3.62 | 1.08 ± 0.14 | 1.30 ± 0.80 | 3.86 ± 0.11 | 2.20 ± 0.40 |
OT4.77 | 1.62 ± 0.17 | 1.50 ± 0.30 | 4.27 ± 0.16 | 2.10 ± 0.30 |
OT5.97 | 2.94 ± 0.11 | 4.30 ± 1.10 | 5.02 ± 0.09 | 5.90 ± 1.40 |
S# | dg (%) | dc (%) | k | ||||
---|---|---|---|---|---|---|---|
Cr | Fe | Mo | Ni | W | |||
Overlap 1/2 | |||||||
OH3.62 | 6.01 | 5.26 | 0.974 | 1.041 | 0.832 | 1.060 | 1.071 |
OH4.77 | 8.34 | 7.76 | 0.952 | 0.932 | 0.841 | 1.102 | 1.065 |
OH5.97 | 13.63 | 11.21 | 0.948 | 1.046 | 0.799 | 1.070 | 1.015 |
Overlap 1/3 | |||||||
OT3.62 | 8.38 | 7.30 | 0.971 | 1.052 | 0.811 | 1.063 | 1.055 |
OT4.77 | 15.39 | 14.33 | 0.931 | 1.032 | 0.749 | 1.022 | 1.001 |
OT5.97 | 14.03 | 14.29 | 0.928 | 1.029 | 0.785 | 1.014 | 1.007 |
S# | Cr | Fe | Mo | Ni | W | Proposed Phase (s) |
---|---|---|---|---|---|---|
Overlap 1/2 | ||||||
OH3.62 | 20.29 ± 1.01 | 5.17 ± 0.67 | 23.67 ± 1.64 | 46.99 ± 1.83 | 3.88 ± 0.66 | σ + ~P |
OH4.77 | 22.03 ± 0.60 | 5.81 ± 0.72 | 28.40 ± 1.25 | 37.92 ± 2.54 | 5.68 ± 0.78 | σ |
OH5.97 | 23.95 ± 0.43 | 5.78 ± 0.91 | 31.70 ± 1.62 | 32.78 ± 1.79 | 5.79 ± 0.23 | σ |
Overlap 1/3 | ||||||
OT3.62 | 21.58 ± 0.74 | 5.12 ± 0.81 | 34.67 ± 1.11 | 33.62 ± 2.14 | 5.01 ± 0.45 | σ + ~P |
OT4.77 | 19.80 ± 1.48 | 6.27 ± 0.48 | 39.34 ± 1.46 | 28.14 ± 1.78 | 6.45 ± 0.77 | σ + ~P |
OT5.97 | 16.42 ± 1.89 | 6.35 ± 0.23 | 41.46 ± 1.12 | 28.96 ± 1.38 | 6.81 ± 0.68 | σ + ~μ + ~P |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabaie, S.; Khodamoradi, Z.; Greene, T.; Benoit, M.J. Effects of Heat Input and Intertrack Overlap on the Microstructure and Properties of Inconel 686 Weld Overlays. Materials 2024, 17, 3315. https://doi.org/10.3390/ma17133315
Tabaie S, Khodamoradi Z, Greene T, Benoit MJ. Effects of Heat Input and Intertrack Overlap on the Microstructure and Properties of Inconel 686 Weld Overlays. Materials. 2024; 17(13):3315. https://doi.org/10.3390/ma17133315
Chicago/Turabian StyleTabaie, Seyedmohammad, Zahra Khodamoradi, Trevor Greene, and Michael J. Benoit. 2024. "Effects of Heat Input and Intertrack Overlap on the Microstructure and Properties of Inconel 686 Weld Overlays" Materials 17, no. 13: 3315. https://doi.org/10.3390/ma17133315
APA StyleTabaie, S., Khodamoradi, Z., Greene, T., & Benoit, M. J. (2024). Effects of Heat Input and Intertrack Overlap on the Microstructure and Properties of Inconel 686 Weld Overlays. Materials, 17(13), 3315. https://doi.org/10.3390/ma17133315