Effect of Carbon on Void Nucleation in Iron
Abstract
:1. Introduction
2. Modeling Procedure
3. Results
3.1. Void Nucleation at Arbitrary , , and
3.2. Void Nucleation Considering Irradiation for Defect Production and Dislocations as Defect Sinks
3.3. Void Nucleation Considering Irradiation, Dislocation, and Carbon Incorporation
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Was, G.S. Fundamentals of Radiation Materials Science: Metals and Alloys, 2nd ed.; Springer Science+Business Media: New York, NY, USA, 2017. [Google Scholar]
- Busby, J.T.; Was, G.S.; Kenik, E.A. Isolating the effect of radiation-induced segregation in irradiation-assisted stress corrosion cracking of austenitic stainless steels. J. Nucl. Mater. 2002, 302, 20–40. [Google Scholar] [CrossRef]
- Cawthorne, C.; Fulton, E.J. Voids in irradiated stainless steel. Nature 1967, 216, 575–576. [Google Scholar] [CrossRef]
- Khvostov, G. Modeling of central void formation in LWR fuel pellets due to high-temperature restructuring. Nucl. Eng. Technol. 2018, 50, 1190–1197. [Google Scholar] [CrossRef]
- Huang, F.H.; Mills, W.J. Delayed hydride cracking behavior for ZIRCALOY-2 tubing. J. Mater. Sci. 1991, 22, 2049–2060. [Google Scholar] [CrossRef]
- Edsinger, K.; Davies, J.; Adamson, R. Degraded Fuel Cladding Fractography and Fracture Behavior. In Zirconium in the Nuclear Industry: Twelfth International Symposium; Sabol, G., Moan, G., Eds.; ASTM International: West Conshohocken, PA, USA, 2000. [Google Scholar]
- Chopra, O.K.; Rao, A.S. A review of irradiation effects on LWR core internal materials—Neutron embrittlement. J. Nucl. Mater. 2011, 412, 195–208. [Google Scholar] [CrossRef]
- Murty, K.L.; Gollapudi, S.; Ramaswamy, K.; Mathew, M.D.; Charit, I. Creep deformation of materials in light water reactors (LWRs). In Materials Ageing and Degradation in Light Water Reactors; Murty, K.L., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 81–148. [Google Scholar]
- Zinkle, S.J.; Ghoniem, N.M. Operating temperature windows for fusion reactor structural materials. Fusion Eng. Des. 2000, 51–52, 55–71. [Google Scholar] [CrossRef]
- Barabash, V.; Kalinin, G.; Kawamura, H.; Mazul, I.; Fabritsiev, S. Materials challenges for ITER—Current status and future activities. J. Nucl. Mater. 2000, 283–287, 138–146. [Google Scholar] [CrossRef]
- Garner, F.A. Radiation-Induced Damage in Austenitic Structural Steels Used in Nuclear Reactors. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R.J.M., Stoller, R.E., Eds.; Elsevier: Oxford, UK, 2020; Volume 3, pp. 57–168. [Google Scholar]
- Li, Y.; Hu, Z.; French, A.; Cooper, K.; Garner, F.A.; Shao, L. Effect of the free surface on near-surface void swelling in self-ion irradiated single crystal pure iron considering the carbon effect. J. Nucl. Mater. 2023, 585, 154594. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Carbon-carbon interaction in iron. J. Mater. Sci. 2004, 39, 3949–3955. [Google Scholar] [CrossRef]
- Domain, C.; Becquart, C.S.; Fort, J. Ab initio study of foreign interstitial atom (C N) interactions with intrinsic point defects in α-Fe. Phys. Rev. B 2004, 69, 144112. [Google Scholar] [CrossRef]
- Jourdan, T.; Fu, C.C.; Joly, L.; Bocquet, J.L.; Caturla, M.J.; Willaime, F. Direct simulation of resistivity recovery experiments in carbon-doped α-iron. Phys. Scr. 2011, T145, 014049. [Google Scholar] [CrossRef]
- Hashimoto, N.; Sakuraya, S.; Tanimoto, J.; Ohnuki, S. Effect of impurities on vacancy migration energy in Fe-based alloys. J. Nucl. Mater. 2014, 445, 224–226. [Google Scholar] [CrossRef]
- Fu, C.C.; Meslin, E.; Barbu, A.; Willaime, F.; Oison, V. Effect of C on Vacancy Migration in α-Iron. Solid State Phenom. 2008, 139, 157–164. [Google Scholar] [CrossRef]
- Kim, H.; Gigax, J.G.; El-Atwani, O.; Chancey, M.R.; Baldwin, J.K.; Wang, Y.; Maloy, S.A. Comparison of void swelling of ferritic-martensitic and ferritic HT9 alloys after high-dose self-ion irradiation. Mater. Charact. 2021, 173, 1100908. [Google Scholar] [CrossRef]
- Was, G.S.; Taller, Z.; Jiao, Z.; Monterrosa, A.M.; Woodley, D.; Jennings, D.; Kubley, T.; Naab, F.; Toader, O.; Uberseder, E. Resolution of the carbon contamination problem in ion irradiation experiments. Nucl. Instrum. Methods Phys. Res. B 2017, 412, 58–65. [Google Scholar] [CrossRef]
- Shao, L.; Gigax, J.; Chen, D.; Kim, H.; Garner, F.A.; Wang, J.; Toloczko, M.B. Standardization of accelerator irradiation procedures for simulation of neutron induced damage in reactor structural materials. Nucl. Instrum. Methods Phys. Res. B 2017, 409, 251–254. [Google Scholar] [CrossRef]
- Katz, J.L.; Wiedersich, H. Nucleation of voids in materials supersaturated with vacancies and interstitials. J. Chem. Phys. 1971, 55, 1414–1434. [Google Scholar] [CrossRef]
- Russell, K.C. Nucleation of voids in irradiated metals. Acta Metall. 1971, 19, 753–758. [Google Scholar] [CrossRef]
- Shao, L. Homogeneous void nucleation in the presence of supersaturated vacancies and interstitials. J. Materiomics 2024, in press. [Google Scholar] [CrossRef]
- Hou, J.; You, Y.W.; Kong, X.S.; Song, J.; Liu, C.S. Accurate prediction of vacancy cluster structures and energetics in bcc transition metals. Acta Mater. 2021, 211, 116860. [Google Scholar] [CrossRef]
- Soneda, N.; Diaz de la Rubia, T. Defect production, annealing kinetics and damage evolution in α-Fe: An atomic-scale computer simulation. Philos. Mag. A 1998, 78, 995–1019. [Google Scholar] [CrossRef]
- Li, Y.; French, A.; Hu, Z.; Gabriel, A.; Hawkins, L.R.; Garner, F.A.; Shao, L. A quantitative method to determine the region not influenced by injected interstitial and surface effects during void swelling in ion-irradiated metals. J. Nucl. Mater. 2023, 573, 154140. [Google Scholar] [CrossRef]
- Shang, S.L.; Zhou, B.C.; Wang, W.Y.; Ross, A.J.; Liu, X.L.; Hu, Y.J.; Fang, H.Z.; Wang, Y.; Liu, Z.K. A comprehensive first-principles study of pure elements: Vacancy formation and migration energies and self-diffusion coefficients. Acta Mater. 2016, 109, 128–141. [Google Scholar] [CrossRef]
- Iijima, Y.; Kimura, K.; Hirano, K. Self-diffusion and isotope effect in α-iron. Acta Metall. 1988, 36, 2811–2820. [Google Scholar] [CrossRef]
- Lübbehusen, M.; Mehrer, H. Self-diffusion in α-iron: The influence of dislocations and the effect of the magnetic phase transition. Acta Metall. Mater. 1990, 38, 283–292. [Google Scholar] [CrossRef]
- Burton, J.J. Vacancy-formation entropy in cubic metals. Phys. Rev. B 1972, 5, 2948. [Google Scholar] [CrossRef]
- Compaan, K.C.; Haven, Y. Correlation factors for diffusion in solids. Trans. Faraday Soc. 1956, 52, 786. [Google Scholar] [CrossRef]
- Peterson, N.L. Self-diffusion in pure metals. J. Nucl. Mater. 1978, 69–70, 3–37. [Google Scholar] [CrossRef]
- Callister, W.D.; Rethwisch, D.G. Materials Science and Engineering: An Introduction, 9th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Wiedersich, H. On the theory of void formation during irradiation. Radiat. Eff. 1972, 12, 111–125. [Google Scholar] [CrossRef]
- Fu, C.C.; Willaime, F.; Ordejón, P. Stability and mobility of mono- and di-interstitials in α-Fe. Phys. Rev. Lett. 2004, 92, 175503. [Google Scholar] [CrossRef]
- Soneda, N.; Diaz de La Rubia, T. Migration kinetics of the self-interstitial atom and its clusters in bcc Fe. Philos. Mag. A 2001, 81, 331–343. [Google Scholar] [CrossRef]
- Shastry, V.; Diaz de la Rubia, T. The Interaction Between Point Defects and Edge Dislocation in BCC Iron. ASME J. Eng. Mater. Technol. 1999, 121, 126–128. [Google Scholar] [CrossRef]
- Lam, N.Q.; Rothman, S.J.; Sizmann, R. Steady-state point-defect diffusion profiles in solids during irradiation. Radiat. Eff. 1974, 23, 53–59. [Google Scholar] [CrossRef]
- Williams, T.M. The effect of soluble carbon on void swelling and low dose dislocation structures in type 316 austenitic stainless steel irradiated with 46.5 MeV Ni6+ ions. J. Nucl. Mat. 1980, 88, 217–225. [Google Scholar] [CrossRef]
- Wang, J.; Toloczko, M.B.; Kruska, K.; Schreiber, D.K.; Edwards, D.J.; Zhu, Z.; Zhang, J. Carbon contamination during ion irradiation—Accurate detection and characterization of its effect on microstructure of ferritic/martensitic steels. Sci. Rep. 2017, 7, 15813. [Google Scholar] [CrossRef]
- Gigax, J.G.; Kim, H.; Aydogan, E.; Garner, F.A.; Maloy, S.; Shao, L. Beam-contamination-induced compositional alteration and its neutron-atypical consequences in ion simulation of neutron-induced void swelling. Mater. Res. Lett. 2017, 5, 478–485. [Google Scholar] [CrossRef]
- Shao, L.; Wei, C.C.; Gigax, J.; Aitkaliyeva, A.; Chen, D.; Sencer, B.H.; Garner, F.A. Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions. J. Nucl. Mater. 2014, 453, 176–181. [Google Scholar] [CrossRef]
- Short, M.P.; Gaston, D.R.; Jin, M.; Shao, L.; Garner, F.A. Modeling injected interstitial effect on void swelling in self-ion irradiation experiments. J. Nucl. Mater. 2016, 471, 200–207. [Google Scholar] [CrossRef]
- Plumton, D.L.; Wolfer, W.G. Suppression of void nucleation in injected interstitials during heavy ion bombardment. J. Nucl. Mater. 1984, 120, 245–253. [Google Scholar] [CrossRef]
- Song, M.; Wang, M.; Lou, X.; Rebak, R.B.; Was, G.S. Radiation damage and irradiation-assisted stress corrosion cracking of additively manufactured 316L stainless steels. J. Nucl. Mater. 2019, 513, 33–44. [Google Scholar] [CrossRef]
- Shiau, C.H.; McMurtrey, M.D.; O’Brien, R.C.; Jerred, N.D.; Scott, R.D.; Lu, J.; Zhang, X.; Wang, Y.; Shao, L.; Sun, C. Deformation behavior and irradiation tolerance of 316L stainless steel fabricated by direct energy deposition. Mater. Des. 2021, 204, 109644. [Google Scholar] [CrossRef]
- Kim, H.; Gigax, J.G.; Rietema, C.J.; El Atwani, O.; Chancey, M.R.; Baldwin, J.K.; Wang, Y.; Maloy, S.A. Void swelling of conventional and composition engineered HT9 alloys after high-dose self-ion irradiation. J. Nucl. Mater. 2022, 560, 153492. [Google Scholar] [CrossRef]
Parameters | Values | References |
---|---|---|
Vacancy formation enthalpy (eV) | 2.59 | [25] |
Vacancy migration enthalpy (eV) | 0.73 | [27] |
Pre-exponential factor of self-diffusion coefficient, (cm2/s) | 11.75 | [27] |
Activation energy of self-diffusion coefficient, (eV) | 3.3 | [27] |
Vacancy formation entropy ( | 2.17 | [30] |
Parameters | Values | References |
---|---|---|
Vacancy migration enthalpy (eV) | 0.73 | [27] |
Vacancy diffusivity prefactor ( | 1.34 | |
Interstitial migration enthalpy (eV) | 0.34 | [35] |
Interstitial diffusivity prefactor () | [36] | |
Dislocation trapping radius for vacancies (nm) | 1.2 | [37] |
Dislocation trapping radius for interstitials (nm) | 3.6 | [37] |
Dislocation density () | ||
Survival fraction of defects after damage cascade creation | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, L. Effect of Carbon on Void Nucleation in Iron. Materials 2024, 17, 3375. https://doi.org/10.3390/ma17133375
Shao L. Effect of Carbon on Void Nucleation in Iron. Materials. 2024; 17(13):3375. https://doi.org/10.3390/ma17133375
Chicago/Turabian StyleShao, Lin. 2024. "Effect of Carbon on Void Nucleation in Iron" Materials 17, no. 13: 3375. https://doi.org/10.3390/ma17133375
APA StyleShao, L. (2024). Effect of Carbon on Void Nucleation in Iron. Materials, 17(13), 3375. https://doi.org/10.3390/ma17133375