Analysis of the Impact of Waste Fly Ash on Changes in the Structure and Thermal Properties of the Produced Recycled Materials Based on Polyethylene
Abstract
:1. Introduction
2. Materials and Experimental Procedure
2.1. Materials
2.2. Test Methods
2.2.1. X-ray Diffraction (XRD)
2.2.2. FTIR-ATR Studies
2.2.3. Differential Scanning Calorimetry (DSC)
- SK—degree of crystallinity, %;
- —the enthalpy of fusion for the material examined, J/g;
- —the mass fraction of homopolymer added to the composite studied;
2.2.4. Microscopic Studies
2.2.5. Three-Point Bending Test
2.2.6. Hardness
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Golewski, G.H. Beton Modyfikowany Popiołem Lotnym Krzemionkowym Poddany Ekspozycji Niskich Temperatur; WPL: Lublin, Poland, 2019. (In Polish) [Google Scholar]
- Smołka-Danielowska, D.; Jabłońska, M.; Godziek, S. The Influence of Hard Coal Combustion in Individual Household Furnaces on the Atmosphere Quality in Pszczyna (Poland). Minerals 2021, 11, 1155. [Google Scholar] [CrossRef]
- EN 450-1:2009; Fly Ash for Concrete—Part 1: Definition, Specifications and Conformity Criteria. European Standards s.r.o.: Plzen, Czech Republic, 2009.
- Porąbka, A.; Jurkowski, K.; Laska, J. Fly ash used as a reinforcing and flame-retardant filler in low-density polyethylene. Polimery 2015, 4, 251–257. [Google Scholar] [CrossRef]
- Grabowski, W.; Wilanowicz, J.; Andrzejczak, M.; Bilski, M. Warunki zastosowania popiołu lotnego jako wypełniacza do mieszanek mineralno–asfaltowych. Budownictwo i Architektura 2014, 13, 181–190. (In Polish) [Google Scholar] [CrossRef]
- Pierzyna, P. Możliwość wykorzystania w górnictwie ubocznego produktu spalania pochodzącego z energetyki stosującej wegiel brunatny. Rynek Energii 2022, 2, 54–60. (In Polish) [Google Scholar]
- Skawińska, A.; Tkocz, A.; Laska-Józefczak, P.; Foszcz, T. The possibility of the use of secondary raw materials from energy and iron&steel industries for glass-ceramics production. Structure 2018, 10, 114–121. [Google Scholar] [CrossRef]
- Kojder, K.; Śliwka, M. Ocena możliwości wykorzystania popiołów ze spalania biomasy w rekultywacji biologicznej. Pol. J. Sustain. Dev. 2020, 24, 63–70. (In Polish) [Google Scholar] [CrossRef]
- Gruchot, A. Utilization of post coal waste composites and fly ash for levee construction. Przegląd Górniczy 2014, 7, 158–164. (In Polish) [Google Scholar]
- Łach, M.; Mierzwiński, D.; Mikuła, J. Synteza zeolitów z popiołów i żużli ze spalarni odpadów. Inżynieria Ekologiczna 2017, 18, 196–201. (In Polish) [Google Scholar] [CrossRef]
- Kaleni, A.; Magagula, S.I.; Motloung, M.T.; Mochane1, M.J.; Mokhena, T.C. Preparation and characterization of coal fly ash reinforced polymer composites: An overview. Express Polym. Lett. 2022, 16, 735–759. [Google Scholar] [CrossRef]
- Caban, R.; Gnatowski, A. Structural and Thermal Examinations of Polyamide Modified with Fly Ash from Biomass Combustion. Materials 2023, 16, 5277. [Google Scholar] [CrossRef]
- Sun, Q.; Zhao, S.; Zhao, X.; Song, Y.; Ban, X.; Zhang, N. Influence of different grinding degrees of fly ash on properties and reaction degrees of geopolymers. PLoS ONE 2023, 18, e0282927. [Google Scholar] [CrossRef] [PubMed]
- Zaichenko, N.M.; Nefedov, V.V. Poly(ethylene terephthalate) composite material with modified fly ash filler. Mag. Civil Eng. 2021, 101, 10103. [Google Scholar] [CrossRef]
- Akram, A.H.; Naeem, N.; Khoja, A.H.; Shahzad, F.; Khattak, A.; Iftikhar, M.; Imran, K.; Al-Anazi, A.; Din, U.I.; Daood, S.S. Biomass fly ash as nanofiller to improve the dielectric properties of low-density polyethylene for possible high-voltage applications. Heliyon 2024, 10, e23350. [Google Scholar] [CrossRef] [PubMed]
- Porcino, D.D.; Mauriello, F.; Bonaccorsi, L.; Tomasello, G.; Paone, E.; Malara, A. Recovery of Biomass Fly Ash and HDPE in Innovative Synthetic Lightweight Aggregates for Sustainable Geotechnical Applications. Sustainability 2020, 12, 6552. [Google Scholar] [CrossRef]
- Porcino, D.D.; Tomasello, G.; Mauriello, F.; Malara, A. Environmental and geotechnical properties of lightweight aggregates made of reused solid wastes. Environ. Geotech. 2023. [Google Scholar] [CrossRef]
- Mohd Nasir, N.H.; Usman, F.; Woen, E.L.; Ansari, M.N.M.; Supian, A.B.M. Saloma S. Microstructural and Thermal Behaviour of Composite Material from Recycled Polyethylene Terephthalate and Fly Ash. Recycling 2023, 8, 11. [Google Scholar] [CrossRef]
- Brammer, S. Injection Molding Advanced Troubleshooting Guide; Hanser Publications: Cincinnati, OH, USA, 2021. [Google Scholar]
- Kim, M.; Lee, C.H. Hydrogenation of High-Density Polyethylene during Decompression of Pressurized Hydrogen at 90 MPa: A Molecular Perspective. Polymers 2023, 15, 2880. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Zhu, H.; Duan, T.; Chen, H.; Wu, F.; Jiang, L.; Wang, Z. High-density polyethylene crystals with double melting peaks induced by ultra-high-molecular weight polyethylene fibre. R. Soc. Open Sci. 2018, 5, 180394. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, M.N. Effect of Filler Particle Size on the Recyclability of Fly Ash Filled HDPE Composites. Polymers 2021, 13, 2836. [Google Scholar] [CrossRef]
- Erdmann, M.; Kupsch, A.; Muller, B.R.; Hentschel, M.P.; Niebergall, U.; Bohning, M.; Bruno, G. Diesel-induced transparency of plastically deformed high-density polyethylene. J. Mater. Sci. 2019, 54, 11739–11755. [Google Scholar] [CrossRef]
- PN-79/C-89027; Tworzywa Sztuczne. Oznaczanie Cech Wytrzymałosciowych Przy Satycznym Zgienaniu. The Polish Committee for Standardization: Warsaw, Poland, 1979.
- Leskovics, K.; Kollar, M.; Barczy, P. A study of structure and mechanical properties of welded joints in polyethylene pipes. Mater. Sci. Eng. A 2006, 419, 138–143. [Google Scholar] [CrossRef]
- Huber, R.C.; Watkins, E.B.; Dattelbaum, D.M.; Bartram, B.D.; Gibson, L.L.; Gustavsen, R.L. In situ x-ray diffraction of high density polyethylene during dynamic drive: Polymer chain compression and decomposition. J. Appl. Phys. 2021, 130, 175901. [Google Scholar] [CrossRef]
- Fiedor-Toboła, M.; Dmochowska, A.; Jędrzejewski, R.; Stawiński, W.; Kryszak, B.; Cybińska, J. Pectin-organophilized ZnO nanoparticles as sustainable fillers for high-density polyethylene composites. Int. J. Biol. Macromol. 2021, 182, 1832–1842. [Google Scholar] [CrossRef] [PubMed]
- Obdrup, A.S.; Wieland, D.C.; Huss-Hansen, M.K.; Arras, M.L.; Knaapila, M. Classifying condition of ultra-high-molecular-weight polyethylene ropes with wide-angle X-ray scattering. Polym. Test. 2022, 109, 107524. [Google Scholar] [CrossRef]
- Zhu, T.; Li, X.; Zhao, X.; Zhang, X.; Lu, Y.; Zhang, L. Stress-strain behavior and corresponding crystalline structures of four types of polyethylene under a wide range of strain rates. Polym. Test. 2022, 106, 107460. [Google Scholar] [CrossRef]
- Xiang, D.; Wang, L.; Tang, Y.; Zhao, C.; Harkin-Jones, E.; Li, Y. Effect of phase transitions on the electrical properties of polymer/carbon nanotube and polymer/graphene nanoplatelet composites with different conductive network structures. Polym. Int. 2018, 67, 227–235. [Google Scholar] [CrossRef]
- Russell, K.E.; Hunter, B.K.; Heyding, R.D. Monoclinic polyethylene revisited. Polymer 1997, 38, 1409–1414. [Google Scholar] [CrossRef]
- Wu, X.; Pu, P.; Xu, Y.; Shi, J.; Liu, X.; Zhong, Z.; Luo, S.N. Deformation of high density polyethylene by dynamic equal-channel-angular pressing. R. Soc. Chem. 2018, 8, 22583–22591. [Google Scholar] [CrossRef] [PubMed]
- Costa, U.O.; da Costa Garcia Filho, F.; Gὀmez-del Río, T.; Pereira Lima Júnior, E.; Monteiro, S.N.; Cassiano Nascimento, L.F. Characterization and ballistic performance of hybrid jute and aramid reinforcing graphite nanoplatelets in high-density polyethylene nanocomposites. J. Mater. Res. Technol. 2024, 28, 1570–1583. [Google Scholar] [CrossRef]
- Verma, P.; Kumar, A.; Chauhan, S.S.; Verma, M.; Malik, R.S.; Choudhary, V. Industrially viable technique for the preparation of HDPE/fly ash composites at high loading: Thermal, mechanical, and rheological interpretations. J. Appl. Polym. Sci. 2018, 135, 45995. [Google Scholar] [CrossRef]
- Kar, K.K. Handbook of Fly Ash; Butterworth-Heinemann: Oxford, UK, 2022. [Google Scholar]
- Strzałkowska, E. Morphology and chemical composition of mineral matter present in fly ashes of bituminous coal and lignite. Int. J. Environ. Sci. Technol. 2021, 18, 2533–2544. [Google Scholar] [CrossRef]
- Misiak, J. Cząstki węglowe w popiołach lotnych ze spalania węgla z polskich złóż. Min. Resour. Manag. 2015, 31, 111–120. (In Polish) [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Khatib, A.M.; Badawi, M.S.; Rashad, A.R.; El-Sharkawy, R.M.; Thabet, A.A. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat. Phys. Chem. 2018, 145, 160–173. [Google Scholar] [CrossRef]
- Charles, J.; Ramkumaar, G.R. Qualitative Analysis of High Density Polyethylene Using FTIR Spectroscopy. Asian J. Chem. 2009, 21, 4477–4484. [Google Scholar]
- Gulmine, J.V.; Janissek, P.R.; Heise, H.M.; Akcelrud, L. Polyethylene characterization by FTIR. Polym. Test. 2021, 21, 557–563. [Google Scholar] [CrossRef]
- Cosnita, M.; Balas, M.; Cazan, C. The Influence of Fly Ash on the Mechanical Properties of Water Immersed All Waste Composites. Polymers 2022, 14, 1957. [Google Scholar] [CrossRef] [PubMed]
- Wons, W.; Murzyn, P.; Kłosek-Wawrzyn, E. Struktura składników popiołów lotnych o różnej granulacji. Ceram. Mater. 2015, 67, 407–412. [Google Scholar]
- Caban, R. FTIR-ATR spectroscopic, thermal and microstructural studies on poypropylene-glass fiber composites. J. Mol. Struct. 2022, 1264, 133181. [Google Scholar] [CrossRef]
- Nowak, A.; Lubas, M.; Jasiński, J.J.; Szumera, M.; Caban, R.; Iwaszko, J.; Koza, K. Effect of dolomite addition on the structureand properties of multicomponent amphibolite glasses. Materials 2022, 14, 4870. [Google Scholar] [CrossRef]
- Hamzah, M.; Khenfouch, M.; Rjeb, A.; Sayouri, S.; Houssaini, D.S.; Darhouri, M.; Srinivasu, V.V. Surface chemistry changes and microstructure evaluation of low density nanocluster polyethylene under natural weathering: A spectroscopic investigation. J. Phys. Conf. Ser. 2018, 984, 012010. [Google Scholar] [CrossRef]
- Zerbi, G.; Gallino, G.; Del Fanti, N.; Baini, L. Structural depth profiling in polyethylene films by multiple internal reflection infra-red spectroscopy. Polymer 1989, 30, 2324–2327. [Google Scholar] [CrossRef]
- Tarani, E.; Arvanitidis, I.; Christofilos, D.; Bikiaris, D.N.; Chrissafis, K.; Vourlias, G. Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: A comparative study. J. Mater. Sci. 2023, 58, 1621–1639. [Google Scholar] [CrossRef]
- Stark, N.M.; Matuana, L.M. Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy. Polym. Degrad. Stab. 2004, 86, 1–9. [Google Scholar] [CrossRef]
- Zaccardi, F.; Toto, E.; Rastogi, S.; La Saponara, V.; Santonicola, M.G.; Laurenzi, S. Impact of Proton Irradiation on Medium Density Polyethylene/Carbon Nanocomposites for Space Shielding Applications. Nanomaterials 2023, 13, 1288. [Google Scholar] [CrossRef] [PubMed]
- Satapathy, S. Development of value-added composites from recycled high-density polyethylene, jute fiber and fly ash cenospheres: Mechanical, dynamic mechanical and thermal properties. Int. J. Plast. Technol. 2018, 22, 386–405. [Google Scholar] [CrossRef]
- Divya, V.C.; Khan, M.A.; Rao, B.N.; Sailaja, R.R.N. High density polyethylene/cenosphere composites reinforced with multi-walled carbon nanotubes: Mechanical, thermal and fire retardancy studies. Mater. Des. 2015, 65, 377–386. [Google Scholar] [CrossRef]
- Strzałkowska, E. Skład materii organicznej i nieorganicznej krzemionkowych popiołów lotnych, jako element ich przydatności w technologiach materiałów budowlanych. Min. Resour. Manag. 2016, 32, 71–88. (In Polish) [Google Scholar] [CrossRef]
- Igarza, E.; Pardo, S.G.; Abad, M.J.; Cano, J.; Galante, M.J.; Pettarin, V.; Bernal, C. Structure-fracture properties relationship for Polypro-pylene reinforced with fly ash with and without maleic anhydride functionalized isotactic Polypropylene as coupling agent. Mater. Des. 2014, 55, 85–92. [Google Scholar] [CrossRef]
- Ratajczak, T.; Gaweł, A.; Górniak, K.; Muszyński, M.; Szydłak, T.; Wyszomirski, P. Charakterystyka popiołów lotnych ze spalania niektórych węgli kamiennych i brunatnych. Polskie Towarzystwo Mineralogiczne Prace Specjalne 1999, 13, 1–34. (In Polish) [Google Scholar]
Specimen | HDPE | HDPE/5FA | HDPE/10FA | HDPE/15FA |
---|---|---|---|---|
Fly ash from hard coal combustion, wt% | - | 5 | 10 | 15 |
Material | Pic 2θ, ° | Intensity, Counts | FWHM | Crystallinity, % | Size of the Crystalline Domains, nm |
---|---|---|---|---|---|
HDPE | 25.17 | 13,000.0 | 0.49 | 76.36 | 19.50 |
27.93 | 1735.9 | 0.64 | 15.02 | ||
22.78 | 3973.8 | 0.65 | 14.64 | ||
HDPE/5FA | 25.20 | 6775.1 | 0.50 | 74.86 | 19.12 |
28.04 | 1486.8 | 0.65 | 14.79 | ||
22.91 | 2085.9 | 0.68 | 14.00 | ||
HDPE/10FA | 25.26 | 5224.0 | 0.51 | 73.86 | 18.74 |
28.06 | 962.3 | 0.66 | 14.57 | ||
22.91 | 1486.77 | 0.69 | 13.79 | ||
HDPE/15FA | 25.27 | 2592.3 | 0.52 | 72.23 | 18.38 |
28.06 | 634.6 | 0.67 | 14.35 | ||
22.90 | 1109.01 | 0.70 | 13.60 |
Peak Number | Band Wave Number, cm−1 | Absorbing Bands | Type of Vibrations | Intensity | Phase Type |
---|---|---|---|---|---|
1 | 2918 | CH2 | asymmetric stretching | Strong | |
2 | 2849 | CH2 | symmetric stretching | Strong | |
3 | 1471 | CH2 | C-H bending vibrations | Strong | crystalline |
4 | 1462 | CH2 | C-H bending vibrations | Strong | amorphous |
5 | 729 | CH2 | C-H rocking vibrations | Medium | crystalline |
6 | 719 | CH2 | C-H rocking vibrations | Medium | amorphous |
Material | Crystallinity Xc, % |
---|---|
HDPE | 74.8 |
HDPE/5FA | 74.4 |
HDPE/10FA | 73.2 |
HDPE/15FA | 71.1 |
Peak Temperature, TC, °C | Crystallinity Xc, % | Peak Temperature T Peak, °C | |
---|---|---|---|
HDPE | 115.1 | 73.2 | 138.2 |
HDPE/5FA | 115.3 | 69.0 | 137.3 |
HDPE/10FA | 115.5 | 65.8 | 137.5 |
HDPE/15FA | 116.4 | 60.2 | 136.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caban, R.; Gnatowski, A. Analysis of the Impact of Waste Fly Ash on Changes in the Structure and Thermal Properties of the Produced Recycled Materials Based on Polyethylene. Materials 2024, 17, 3453. https://doi.org/10.3390/ma17143453
Caban R, Gnatowski A. Analysis of the Impact of Waste Fly Ash on Changes in the Structure and Thermal Properties of the Produced Recycled Materials Based on Polyethylene. Materials. 2024; 17(14):3453. https://doi.org/10.3390/ma17143453
Chicago/Turabian StyleCaban, Renata, and Adam Gnatowski. 2024. "Analysis of the Impact of Waste Fly Ash on Changes in the Structure and Thermal Properties of the Produced Recycled Materials Based on Polyethylene" Materials 17, no. 14: 3453. https://doi.org/10.3390/ma17143453
APA StyleCaban, R., & Gnatowski, A. (2024). Analysis of the Impact of Waste Fly Ash on Changes in the Structure and Thermal Properties of the Produced Recycled Materials Based on Polyethylene. Materials, 17(14), 3453. https://doi.org/10.3390/ma17143453