Valorization of Iron (II) Oxalate Dihydrate Coming from Pickling Processes through Thermal Conversion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Physicochemical Characterization
3. Results
3.1. Thermal Conversion Analysis
3.2. Thermochemical Kinetic Results
4. Discussion
5. Conclusions
- The diffraction patterns show that it was composed mainly of iron oxalate dehydrate. The TGA/DSC analyses display two weight losses that correspond to a release of CO2, suggesting the initial thermal conversion of the material and a release of water crystallized in the lattice of the sample.
- The thermal conversion shows that iron oxalate decomposes through a complex reaction mechanism involving several steps. The results, analyzed via the X-ray diffraction technique, indicate that a high temperature promotes the formation of magnetite over other oxides. At temperatures of T = 573 K and T = 673 K, the resulting product was a mix between the oxalate that was still present and the magnetite at time t = 120 min, with an amorphous background. At temperatures of 773 K and 873 K, the XRD pattern shows the formation of magnetite just after 60 min, which also had a rather high crystallinity.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notation
Abbreviations | |
DOC | Degree of crystallinity |
DSC | Differential scanning calorimetry |
MS | Mass spectrum detector |
Powder diffraction file | |
RIR | Refraction Index Ratio |
TGA | Thermogravimetric Analysis |
XRD | X-ray Diffraction |
XRF | X-ray Fluorescence |
Symbols | |
Grating constant | |
Diffraction order | |
Temperature | |
Time | |
Wavelength | |
θ | Glancing angle |
References
- Zaferani, H.S.; Sharifi, M.; Zaarei, D.; Shishesaz, M.R. Application of eco-friendly products as corrosion inhibitors for metals in acid pickling processes—A review. J. Env. Chem. Eng. 2013, 1, 652–657. [Google Scholar] [CrossRef]
- Sefaja, J.; Dernikovic, B.; Malina, J.; Locrecek, B. Investigation of steel corrosion in pickling solutions: Solutions with inhibitors. Surf. Technol. 1983, 20, 247–263. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Liu, L.; Han, W.; Sun, X.; Li, J.; Shen, J. Hydrochloric acid pickling process optimization in metal wire working. Int. J. Simul. Syst. Sci. Technol. 2015, 16, 1.1–1.6. [Google Scholar] [CrossRef]
- Regel-Rosocka, M. A review on methods of regeneration of spent pickling solutions from steel processing. J. Hazard. Mater. 2010, 177, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.B.; Cai, N.S.; Li, Z.S. Hydrogen production from the steam-iron process with direct reduction of iron oxide by chemical looping combustion of coal char. Energy Fuels 2008, 22, 2570–2579. [Google Scholar] [CrossRef]
- Covino, B.; Scalera, J.; Fabis, P. Pickling of Stainless Steels—A Review; U.S. Department of the Interior, Bureau of Mines: Washington, DC, USA, 1984. [Google Scholar]
- Brown, R.A.; Bevan, S.C. The thermal decomposition of ferrous oxalate dihydrate. J. Inorg. Nucl. Chem. 1966, 28, 387–391. [Google Scholar] [CrossRef]
- Rao, V.; Shashimohan, A.L.; Biswas, A.B. Studies on the formation of γ-Fe2O3 (maghemite) by thermal decomposition of ferrous oxalate dihydrate. J. Mater. Sci. 1974, 9, 430–433. [Google Scholar] [CrossRef]
- Angermann, A.; Töpfer, J. Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dihydrate. J. Mater. Sci. 2008, 43, 5123–5130. [Google Scholar] [CrossRef]
- Hermanek, M.; Zboril, R.; Mashlan, M.; MacHala, L.; Schneeweiss, O. Thermal behaviour of iron (II) oxalate dihydrate in the atmosphere of its conversion gases. J Mater Chem 2006, 16, 1273–1280. [Google Scholar] [CrossRef]
- Devi, A.; Singhal, A.; Gupta, R.; Panzade, P. A study on treatment methods of spent pickling liquor generated by pickling process of steel. Clean Technol. Environ. Policy 2014, 16, 1515–1527. [Google Scholar] [CrossRef]
- Cerciello, F.; Fabozzi, A.; Yannakis, C.; Schmitt, S.; Narin, O.; Scherer, V.; Senneca, O. Kinetics of iron reduction upon reduction/oxidation cycles. Int. J. Hydrog. Energy 2024, 65, 337–347. [Google Scholar] [CrossRef]
- Fabozzi, A.; Cerciello, F.; Senneca, O. Reduction of Iron Oxides for CO2 Capture Materials. Energies 2024, 17, 1673. [Google Scholar] [CrossRef]
Steps | Reaction |
---|---|
1 | FeC2O4 ·2H2O ⇒ FeC2O4 + 2H2O |
2 | 3 FeC2O4 ⇔ Fe3O4 + 4CO + 2CO2 |
3 | 3 FeC2O4 + 2CO ⇔ Fe3C + 7 CO2 |
4 | Fe3C ⇔ 3Fe + C |
5 | Fe3O4 + CO ⇔ 3 FeO + CO2 |
6 | 4FeO ⇔ Fe3O4 + Fe |
Elements | Area [%] |
---|---|
Fe | 74.3 |
Zn | 9.16 |
P | 7.67 |
Cl | 3.78 |
Mg | 1.77 |
Ca | 0.0707 |
V | 0.0463 |
Sn | 0.0395 |
La | 0.0389 |
Cu | 0.0348 |
S | 1.11 |
Al | 0.965 |
Si | 0.349 |
Mn | 0.305 |
Ni | 0.180 |
Cr | 0.135 |
Br | 0.0106 |
Mo | 0.0076 |
Ag | 0.0073 |
Rb | 0.0054 |
Y | 0.0049 |
As | 0.0041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salucci, E.; D’Angelo, A.; Fabozzi, A.; Senneca, O.; Bellucci, F.; Francesca, R.; Grénman, H.; Saxen, H.; Di Serio, M.; Russo, V. Valorization of Iron (II) Oxalate Dihydrate Coming from Pickling Processes through Thermal Conversion. Materials 2024, 17, 4630. https://doi.org/10.3390/ma17184630
Salucci E, D’Angelo A, Fabozzi A, Senneca O, Bellucci F, Francesca R, Grénman H, Saxen H, Di Serio M, Russo V. Valorization of Iron (II) Oxalate Dihydrate Coming from Pickling Processes through Thermal Conversion. Materials. 2024; 17(18):4630. https://doi.org/10.3390/ma17184630
Chicago/Turabian StyleSalucci, Emiliano, Antonio D’Angelo, Antonio Fabozzi, Osvalda Senneca, Francesco Bellucci, Rosa Francesca, Henrik Grénman, Henrik Saxen, Martino Di Serio, and Vincenzo Russo. 2024. "Valorization of Iron (II) Oxalate Dihydrate Coming from Pickling Processes through Thermal Conversion" Materials 17, no. 18: 4630. https://doi.org/10.3390/ma17184630
APA StyleSalucci, E., D’Angelo, A., Fabozzi, A., Senneca, O., Bellucci, F., Francesca, R., Grénman, H., Saxen, H., Di Serio, M., & Russo, V. (2024). Valorization of Iron (II) Oxalate Dihydrate Coming from Pickling Processes through Thermal Conversion. Materials, 17(18), 4630. https://doi.org/10.3390/ma17184630