Investigation of Phase Transformation and Fracture Pattern as a Result of Long-Term Chewing Simulation and Static Loading of Reduced-Diameter Zirconia Implants
Abstract
:1. Introduction
2. Materials/Methods
2.1. Experimental Setup
2.2. Chewing Simulation and Static Loading
2.3. Raman Spectroscopy Evaluation
2.4. Mapping of the Phases
2.5. Micro-CT Evaluation
2.6. Micro-CT Image Analysis
2.7. Gap Measurements
3. Results
3.1. Dynamic and Static Loading
3.2. Raman Spectroscopy
3.3. Micro-CT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andreiotelli, M.; Wenz, H.J.; Kohal, R.J. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin. Oral Implant. Res. 2009, 20, 32–47. [Google Scholar] [CrossRef] [PubMed]
- McKinney, R.V., Jr.; Koth, D.L. The single-crystal sapphire endosteal dental implant: Material characteristics and 18-month experimental animal trials. J. Prosthet. Dent. 1982, 47, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Sandhaus, S. Technic and instrumentation of the implant CBS (Cristalline Bone Screw). Inf. Odonto-Stomatol. 1968, 4, 19–24. [Google Scholar]
- Depprich, R.; Zipprich, H.; Ommerborn, M.; Naujoks, C.; Wiesmann, H.P.; Kiattavorncharoen, S.; Lauer, H.C.; Meyer, U.; Kübler, N.R.; Handschel, J. Osseointegration of zirconia implants compared with titanium: An in vivo study. Head Face Med. 2008, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- Piconi, C.; Maccauro, G.; Muratori, F.; Branch del Prever, E. Alumina and zirconia ceramics in joint replacements. J. Appl. Biomater. Biomech. 2003, 1, 19–32. [Google Scholar]
- Pieralli, S.; Kohal, R.J.; Jung, R.E.; Vach, K.; Spies, B.C. Clinical Outcomes of Zirconia Dental Implants: A Systematic Review. J. Dent. Res. 2017, 96, 38–46. [Google Scholar] [CrossRef]
- Scarano, A.; Di Carlo, F.; Quaranta, M.; Piattelli, A. Bone response to zirconia ceramic implants: An experimental study in rabbits. J. Oral Implantol. 2003, 29, 8–12. [Google Scholar] [CrossRef]
- Scarano, A.; Piatelli, M.; Caputi, S.; Favero, G.A.; Piattelli, A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: An in vivo human study. J. Periodontol. 2004, 75, 292–296. [Google Scholar] [CrossRef]
- Wenz, H.J.; Bartsch, J.; Wolfart, S.; Kern, M. Osseointegration and clinical success of zirconia dental implants: A systematic review. Int. J. Prosthod. 2008, 21, 27–36. [Google Scholar]
- Cionca, N.; Hashim, D.; Mombelli, A. Zirconia dental implants: Where are we now, and where are we heading? Periodontology 2000 2017, 73, 241–258. [Google Scholar] [CrossRef]
- Kohal, R.J.; Weng, D.; Bachle, M.; Strub, J.R. Loaded custom-made zirconia and titanium implants show similar osseointegration: An animal experiment. J. Periodontol. 2004, 75, 1262–1268. [Google Scholar] [CrossRef]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, J. What future for zirconia as a biomaterial? Biomaterials 2006, 27, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, J.; Gremillard, L.; Deville, S. Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants. Annu. Rev. Mater. Res. 2007, 37, 1–32. [Google Scholar] [CrossRef]
- Monzavi, M.; Zhang, F.; Meille, S.; Douillard, T.; Adrien, J.; Noumbissi, S.; Nowzari, H.; Chevalier, J. Influence of artificial aging on mechanical properties of commercially and non-commercially available zirconia dental implants. J. Mech. Behav. Biomed. Mater. 2020, 101, 103423. [Google Scholar] [CrossRef]
- Pittayachawan, P.; McDonald, A.; Young, A.; Knowles, J.C. Flexural strength, fatigue life, and stress-induced phase transformation study of Y-TZP dental ceramic. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 88B, 366–377. [Google Scholar] [CrossRef]
- Zhang, F.; Zur Heide, C.M.; Chevalier, J.; Vleugels, J.; Van Meerbeek, B.; Wesemann, C.; Dos Santos, B.C.; Sergo, V.; Kohal, R.J.; Adolfsson, E.; et al. Reliability of an injection-moulded two-piece zirconia implant with PEKK abutment after long-term thermo-mechanical loading. J. Mech. Behav. Biomed. Mater. 2020, 110, 103967. [Google Scholar] [CrossRef]
- Sanon, C.; Chevalier, J.; Douillard, T.; Cattani-Lorente, M.; Scherrer, S.S.; Gremillard, L. A new testing protocol for zirconia dental implants. Dent. Mater. 2015, 31, 15–25. [Google Scholar] [CrossRef]
- Tekbaş Atay, M.; Oğuz Ahmet, B.S.; Sayın Özel, G. The impotance of thermal and loading cycles in terms of simulation of the oral cavity. J. Dent. Fac. Atatürk Uni. 2016, 26, 88–93. [Google Scholar]
- Krejci, I.; Lutz, F. In-vitro test results of the evaluation of dental restoration systems. Correlation with in-vivo results. Schweiz. Monatsschr. Zahnmed. 1990, 100, 1445–1449. [Google Scholar] [PubMed]
- Clarke, D.R.; Adar, F. Measurement of the crystallographically transformed zone produced by fracture in ceramics containing tetragonal zirconia. J. Am. Ceram. Soc. 1982, 65, 284–288. [Google Scholar] [CrossRef]
- Guldberg, R.E.; Ballock, R.T.; Boyan, B.D.; Duvall, C.L.; Lin, A.S.; Nagaraja, S.; Oest, M.; Phillips, J.; Porter, B.D.; Robertson, G.; et al. Analyzing bone, blood vessels, and biomaterials with microcomputed tomography. IEEE Eng. Med. Biol. Mag. 2003, 22, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Guldberg, R.E.; Lin, A.S.; Coleman, R.; Robertson, G.; Duvall, C. Microcomputed tomography imaging of skeletal development and growth. Birth Defects Res. C Embryo Today 2004, 72, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Swain, M.V.; Xue, J. State of the art of Micro-CT applications in dental research. Int. J. Oral Sci. 2009, 1, 177–188. [Google Scholar] [CrossRef]
- Kamel, M.; Vaidyanathan, T.K.; Flinton, R. Effect of abutment preparation and fatigue loading in a moist environment on the fracture resistance of the one-piece zirconia dental implant. Int. J. Oral Maxillofac. Implant. 2017, 32, 533–540. [Google Scholar] [CrossRef]
- ISO 14801; Dynamic Loading Test for Endosseous Dental Implants. International Organization for Standardization: Geneva, Switzerland, 2017; pp. 1–15.
- Enderle, J.D.; Bronzino, D.J. Introduction to Biomedical Engineering. In Biomaterials: Types, Properties, and Their Applications, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Chapter 5.2; pp. 221–250. [Google Scholar]
- Rakosi, T.; Jonas, I.; Graber, T.M. Orthodontic Diagnosis (Color Atlas of Dental Medicine), 1st ed.; Rateitschak, K.H., Wolf, H.F., Eds.; Georg Thieme: Stuttgart, Germany; New York, NY, USA, 1993. [Google Scholar]
- Gargari, M.; Gloria, F.; Napoli, E.; Pujia, A.M. Zirconia: Cementation of prosthetic restorations. Literature review. Oral Implantol. 2010, 3, 25–29. [Google Scholar] [PubMed] [PubMed Central]
- Donegan, S.J.; Knap, F.J. A study of anterior guidance. J Prosthodont. 1995, 4, 226–232. [Google Scholar] [CrossRef]
- Delong, R.; Douglas, W.H. Development of an artificial oral environment for the testing of dental restoratives: Bi-axial force and movement control. J. Dent. Res. 1983, 62, 32–36. [Google Scholar] [CrossRef]
- Steiner, M.; Mitsias, M.E.; Ludwig, K.; Kern, M. In vitro evaluation of a mechanical testing chewing simulator. Dent. Mater. 2009, 25, 494–499. [Google Scholar] [CrossRef]
- Alzyab, B.; Perry, C.H.; Ingel, R.P. High-pressure phase transitions in zirconia and yttria-doped zirconia. J. Am. Ceram. Soc. 1987, 70, 760–765. [Google Scholar] [CrossRef]
- Phillippi, C.M.; Mazdiyasni, K.S. Infrared and Raman spectra of zirconia polymorphs. J. Am. Ceram. Soc. 1971, 54, 254–258. [Google Scholar] [CrossRef]
- Colthup, N.B.; Daly, L.H.; Wiberley, S.E. Introduction to Infrared and Raman Spectroscopy, 3rd ed.; Academic Press, Inc.: San Diego, CA, USA, 1990. [Google Scholar]
- Feldkamp, L.A.; Goldstein, S.A.; Parfitt, A.M.; Jesion, G.; Kleerekoper, M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J. Bone Miner. Res. 1989, 4, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Brosh, T.; Pilo, R.; Sudai, D. The influence of abutment angulation on strains and stresses along the implant/bone interface: Comparison between two experimental techniques. J. Prosthet. Dent. 1998, 79, 328–334. [Google Scholar] [CrossRef]
- Scherrer, S.S.; Mekki, M.; Crottaz, C.; Gahlert, M.; Romelli, E.; Marger, L.; Durual, S.; Vittecoq, E. Translational research on clinically failed zirconia implants. Dent. Mater. 2019, 35, 368–388. [Google Scholar] [CrossRef]
- Schiegnitz, E.; Al-Nawas, B. Narrow-diameter implants: A systematic review and meta-analysis. Clin. Oral Impl. Res. 2018, 29 (Suppl. 16), 21–40. [Google Scholar] [CrossRef]
- Shemtov-Yona, K.; Rittel, D.; Machtei, E.E.; Levın, L. Effect of dental implant diameter on fatigue performance. Part II: Failure analysis. Clin. Implant Dent. Relat. Res. 2014, 16, 178–184. [Google Scholar] [CrossRef]
- Jing, Z.; Ke, Z.; Yihong, L.; Zhijian, S. Effect of multistep processing technique on the formation of microdefects and residual stresses in zirconia dental restorations. J. Prosthodont. 2014, 23, 206–212. [Google Scholar] [CrossRef]
- Kammermeier, A.; Rosentritt, M.; Behr, M.; Schneider-Feyrer, S.; Preis, V. In vitro performance of one- and two-piece zirconia implant systems for anterior application. J. Dent. 2016, 53, 94–101. [Google Scholar] [CrossRef]
- Attard, L.; Lee, V.; Le, J.; Lowe, C.; Singh, V.; Zhao, J.; Sharma, D. Mechanical Factors Implicated in Zirconia Implant Fracture Placed within the Anterior Region—A Systematic Review. Dent. J. 2022, 10, 22. [Google Scholar] [CrossRef]
- Chrcanovic, B.R.; Kisch, J.; Albrektsson, T.; Wennerberg, A. Factors influencing the fracture of dental implants. Clin. Implant Dent. Relat. Res. 2018, 20, 58–67. [Google Scholar] [CrossRef]
- Li, Y.; Yu, H.J.; Qiu, L.X. Clinical classification and treatment decision of implant fracture. Beijing Da Xue Xue Bao Yi Xue Ban 2022, 54, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Holanda, K.A.B.; Caldas, R.A.; Amaral, M.; Vitti, R.P. Biomechanical evaluation of anterior implants associated with titanium and zirconia abutments and monotype zirconia implants. J. Prosthodont. Res. 2021, 65, 1–5. [Google Scholar] [CrossRef]
- Andreiotelli, M.; Kohal, R.J. Fracture strength of zirconia implants after artificial aging. Clin. Implant Dent. Relat. Res. 2009, 11, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Gahlert, M.; Burtscher, D.; Grunert, I.; Kniha, H.; Steinhauser, E. Failure analysis of fractured dental zirconia implants. Clin. Oral Implant. Res. 2012, 23, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Kohal, R.J.; Wolkewitz, M.; Tsakona, A. The effects of cyclic loading and preparation on the fracture strength of zirconium-dioxide implants: An in vitro investigation. Clin. Oral Implant. Res. 2011, 22, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, F.; Harlass, M.; Adolfsson, E.; Vach, K.; Spies, B.C.; Kohal, R.-J. A Novel Zirconia-Based Composite Presents an Aging Resistant Material for Narrow-Diameter Ceramic Implants. Materials 2021, 14, 2151. [Google Scholar] [CrossRef]
- Cook, R.F.; Pharr, G.M. Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 1990, 73, 787–817. [Google Scholar] [CrossRef]
- Schrader, B. (Ed.) Infrared and Raman Spectroscopy: Methods and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kim, W.; Song, E.; Ju, K.; Lim, D.; Han, D.; Jung, T.; Jeong, Y.; Lee, J.-H.; Kim, B. Mechanical assessment of fatigue characteristics between single-and multi-directional cyclic loading modes on a dental implant system. Materials 2020, 13, 1545. [Google Scholar] [CrossRef]
- Camposilvan, E.; Leone, R.; Gremillard, L.; Sorrentino, R.; Zarone, F.; Ferrari, M.; Chevalier, J. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent. Mater. 2018, 34, 879–890. [Google Scholar] [CrossRef]
- Lughi, V.; Sergo, V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent. Mater. 2010, 26, 807–820. [Google Scholar] [CrossRef]
- Lawson, S. Environmental degradation of zirconia ceramics. J. Eur. Ceram. Soc. 1995, 15, 485–502. [Google Scholar] [CrossRef]
- Osman, R.B.; Swain, M.V. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials 2015, 8, 932–958. [Google Scholar] [CrossRef] [PubMed]
- Al-Zordk, W.; Ghazy, M.; El-Anwar, M. Stress analysis around reduced-diameter zirconia and titanium one-piece ımplants with and without microthreads in the neck: Experimental and finite element analysis. Int. J. Oral Maxillofac. Implant. 2020, 35, 305–312. [Google Scholar] [CrossRef] [PubMed]
Groups | Crown Forms | Number | Abutment Angle | Implant Diameter | Implant Length |
---|---|---|---|---|---|
11-S | Upper incisor | 8 | Straight abutment | 3.7 mm | 11.5 mm |
11-A | Upper incisor | 8 | 15° angled abutment | 3.7 mm | 11.5 mm |
31-S | Lower incisor | 8 | Straight abutment | 3.0 mm | 11.5 mm |
31-A | Lower incisor | 8 | 15° angled abutment | 3.0 mm | 11.5 mm |
13-S | Upper canine | 8 | Straight abutment | 3.7 mm | 11.5 mm |
13-A | Upper canine | 8 | 15° angled abutment | 3.7 mm | 11.5 mm |
Groups | Med. (Std. Dev.) | Min. | Max. | Total Samples | Failed Samples | Survived Samples | Survival Rates |
---|---|---|---|---|---|---|---|
11-S | 1,200,000 (253,710) | 578,539 | 1,200,000 | 8 | 1 | 7 | 87.5% a |
11-A | 1,159,823 (472,374) | 148,07 | 1,200,000 | 8 | 4 | 4 | 50.0% b |
31-S | 56,296 (48,197) | 11,715 | 100,000 | 8 | 8 | 0 | 0.0% c |
31-A | 143 (525.97) | 105 | 1143 | 8 | 8 | 0 | 0.0% c |
13-S | 1,200,000 (0) | 1,200,000 | 1,200,000 | 8 | 0 | 8 | 100.0% d |
13-A | 1,200,000 (542,235) | 139,644 | 1,200,000 | 8 | 2 | 6 | 75.0% e |
Groups | Median (N) (Standard Deviation) | Minimum (N) | Maximum (N) |
---|---|---|---|
11-S | 471.63 (77.03) a | 332.7 | 515.77 |
11-A | 316.34 (60.39) a | 268.88 | 388.79 |
13-S | 291.89 (95.28) a | 239.48 | 482.77 |
13-A | 465.07 (157.77) a | 306.06 | 663.94 |
Groups | Gap Volume (mm3) | Intersection Surface (mm2) | Total Porosity (Percent) | Implant Fracture Volume (mm3) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Med. | Min. | Max. | Med. | Min. | Max. | Med. | Min. | Max. | Med. | Min. | Max. | |
11-S | 37.76 | 33.46 | 43.41 | 3.22 | 3.17 | 3.92 | 94.52 | 88.6 | 97.7 | 4.93 | - | - |
11-A | 42.78 | 35.74 | 46.56 | 3.93 | 3.06 | 4.07 | 81.1 | 90.33 | 97 | 4.68 | 4.63 | 5.1 |
31-S | 26.1 | 23.9 | 30.56 | 2.42 | 2.11 | 2.65 | 79.38 | 70.38 | 85.16 | 5.45 | 4.8 | 6.66 |
31-A | 34.92 | 34.5 | 37.36 | 3.2 | 2.15 | 3.16 | 78.77 | 72.29 | 87.09 | 5.29 | 4.45 | 5.93 |
13-S | 39.5 | 36.37 | 40.81 | 3.41 | 3.05 | 3.85 | 95.74 | 92.65 | 98.45 | - | - | - |
13-A | 39.82 | 37.55 | 49.74 | 3.52 | 3.1 | 4.09 | 94.46 | 85.9 | 97.12 | 4.94 | 4.94 | 5.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atalay Seçkiner, P.; Gönüldaş, F.; Akat, B.; Buyuksungur, A.; Orhan, K. Investigation of Phase Transformation and Fracture Pattern as a Result of Long-Term Chewing Simulation and Static Loading of Reduced-Diameter Zirconia Implants. Materials 2024, 17, 4719. https://doi.org/10.3390/ma17194719
Atalay Seçkiner P, Gönüldaş F, Akat B, Buyuksungur A, Orhan K. Investigation of Phase Transformation and Fracture Pattern as a Result of Long-Term Chewing Simulation and Static Loading of Reduced-Diameter Zirconia Implants. Materials. 2024; 17(19):4719. https://doi.org/10.3390/ma17194719
Chicago/Turabian StyleAtalay Seçkiner, Pelin, Fehmi Gönüldaş, Bora Akat, Arda Buyuksungur, and Kaan Orhan. 2024. "Investigation of Phase Transformation and Fracture Pattern as a Result of Long-Term Chewing Simulation and Static Loading of Reduced-Diameter Zirconia Implants" Materials 17, no. 19: 4719. https://doi.org/10.3390/ma17194719
APA StyleAtalay Seçkiner, P., Gönüldaş, F., Akat, B., Buyuksungur, A., & Orhan, K. (2024). Investigation of Phase Transformation and Fracture Pattern as a Result of Long-Term Chewing Simulation and Static Loading of Reduced-Diameter Zirconia Implants. Materials, 17(19), 4719. https://doi.org/10.3390/ma17194719