Influence of Carbon-Based Fillers on the Electromagnetic Shielding Properties of a Silicone-Potting Compound
Abstract
:1. Introduction
2. Materials and Methods
2.1. Base Material and Fillers
2.2. Processing Methods for the Incorporation of Fillers
2.3. Measurement Methods
2.3.1. Rheological Measurement
2.3.2. Volume Resistance Measurement
2.3.3. Measurement of Shielding Properties
3. Results
3.1. Rheological Results
3.2. Electrical Results
3.3. EMI-Shielding Results
4. Discussion and Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Okumura, T.; Kojima, K. Effects of electromagnetic interferences on implantable cardiac pacemakers. In Proceedings of the 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE), Tokyo, Japan, 1–4 October 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Luca, C.; Salceanu, A. Study upon electromagnetic interferences inside an intensive care unit. In Proceedings of the 2012 International Conference and Exposition on Electrical and Power Engineering, Iasi, Romania, 25–27 October 2012; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar]
- Genender, E.; Garbe, H.; Sabath, F. Probabilistic Risk Analysis Technique of Intentional Electromagnetic Interference at System Level. IEEE Trans. Electromagn. Compat. 2014, 56, 200–207. [Google Scholar] [CrossRef]
- Deutschmann, B.; Winkler, G.; Kastner, P. Impact of electromagnetic interference on the functional safety of smart power devices for automotive applications. Elektrotech. Informationstech. 2018, 135, 352–359. [Google Scholar] [CrossRef]
- Napp, A.; Kolb, C.; Lennerz, C.; Bauer, W.; Schulz-Menger, J.; Kraus, T.; Marx, N.; Stunder, D. Elektromagnetische Interferenz von aktiven Herzrhythmusimplantaten im Alltag und im beruflichen Umfeld. Kardiologe 2019, 13, 216–235. [Google Scholar] [CrossRef]
- Saib, A.; Bednarz, L.; Daussin, R.; Bailly, C.; Lou, X.; Thomassin, J.-M.; Pagnoulle, C.; Detrembleur, C.; Jerome, R.; Huynen, I. Carbon nanotube composites for broadband microwave absorbing materials. IEEE Trans. Microw. Theory Techn. 2006, 54, 2745–2754. [Google Scholar] [CrossRef]
- Jeddi, J.; Katbab, A.A.; Mehranvari, M. Investigation of microstructure, electrical behavior, and EMI shielding effectiveness of silicone rubber/carbon black/nanographite hybrid composites. Polym. Compos. 2019, 40, 4056–4066. [Google Scholar] [CrossRef]
- González, M.; Mokry, G.; de Nicolás, M.; Baselga, J.; Pozuelo, J. Carbon Nanotube Composites as Electromagnetic Shielding Materials in GHz Range. In Carbon Nanotubes—Current Progress of Their Polymer Composites; Berber, M.R., Hafez, I.H., Eds.; InTech: London, UK, 2016; ISBN 978-953-51-2469-6. [Google Scholar]
- Shukla, V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019, 1, 1640–1671. [Google Scholar] [CrossRef] [PubMed]
- Al-Saleh, M.H.; Saadeh, W.H.; Sundararaj, U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study. Carbon 2013, 60, 146–156. [Google Scholar] [CrossRef]
- Gupta, T.K.; Singh, B.P.; Teotia, S.; Katyal, V.; Dhakate, S.R.; Mathur, R.B. Designing of multiwalled carbon nanotubes reinforced polyurethane composites as electromagnetic interference shielding materials. J. Polym. Res. 2013, 20, 169. [Google Scholar] [CrossRef]
- Kumar, G.S.; Vishnupriya, D.; Joshi, A.; Datar, S.; Patro, T.U. Electromagnetic interference shielding in 1-18 GHz frequency and electrical property correlations in poly(vinylidene fluoride)-multi-walled carbon nanotube composites. Phys. Chem. Chem. Phys. 2015, 17, 20347–20360. [Google Scholar] [CrossRef]
- Ma, C.-C.M.; Huang, Y.-L.; Kuan, H.-C.; Chiu, Y.-S. Preparation and electromagnetic interference shielding characteristics of novel carbon-nanotube/siloxane/poly-(urea urethane) nanocomposites. J. Polym. Sci. B Polym. Phys. 2005, 43, 345–358. [Google Scholar] [CrossRef]
- Lecocq, H.; Garois, N.; Lhost, O.; Girard, P.-F.; Cassagnau, P.; Serghei, A. Polypropylene/carbon nanotubes composite materials with enhanced electromagnetic interference shielding performance: Properties and modeling. Compos. Part B Eng. 2020, 189, 107866. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 2009, 47, 1738–1746. [Google Scholar] [CrossRef]
- Al-Saleh, M.H. Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synth. Met. 2015, 205, 78–84. [Google Scholar] [CrossRef]
- Barathi Dassan, E.G.; Anjang Ab Rahman, A.; Abidin, M.S.Z.; Akil, H.M. Carbon nanotube–reinforced polymer composite for electromagnetic interference application: A review. Nanotechnol. Rev. 2020, 9, 768–788. [Google Scholar] [CrossRef]
- The Dow Chemical Company. Technical Datasheet SYLGARD 184 Silicone Elastomer; Dow Inc.: Midland, MI, USA, 2017. [Google Scholar]
- R&G Faserverbundwerkstoffe. Technical Datasheet—Kohlefaser Gemahlen Extrafein 0.1 mm; R&G Faserverbundwerkstoffe GmbH: Waldenbuch, Germany, 2022. [Google Scholar]
- Imerys, S.A. Technical Datasheet—ENSACO™ 350G Conductive Carbon Black; Imerys S.A.: Paris, France, 2022. [Google Scholar]
- Nanocyl. Technical Datasheet—NC7000 Multiwall Carbon Nanotubes; Nanocyl: Sambreville, Belgium, 2016. [Google Scholar]
- OCSiAl. Product Information—TUBALL—OCSiAl SWCNTs for Global Industry; OCSiAl: Luxembourg, 2018. [Google Scholar]
- Huntsman Advanced Materials Inc. Technical Datasheet—MIRALON Pulp; HuntsmanInternational LLC: Salt Lake City, UT, USA, 2020. [Google Scholar]
- CABOT. Product-Guide-Athlos—Carbon Nanostructures; CABOT: Boston, MA, USA, 2019. [Google Scholar]
- Thostenson, E.T.; Chou, T.-W. Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 2006, 44, 3022–3029. [Google Scholar] [CrossRef]
- DIN ISO 3915-2022; Messung des Spezifischen Elektrischen Widerstands von Leitfähigen Kunststoffen. Beuth Verlag GmbH: Berlin, Germany, 2022.
- Pawar, S.P.; Biswas, S.; Kar, G.P.; Bose, S. High frequency millimetre wave absorbers derived from polymeric nanocomposites. Polymer 2016, 84, 398–419. [Google Scholar] [CrossRef]
- Earp, B.; Simpson, J.; Phillips, J.; Grbovic, D.; Vidmar, S.; McCarthy, J.; Luhrs, C.C. Electrically Conductive CNT Composites at Loadings below Theoretical Percolation Values. Nanomaterials 2019, 9, 491. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, S.; Liu, H.; Wang, X. Analysis of electromagnetic scattering from plasmonic inclusions beyond the quasi-static approximation and applications. ESAIM Math. Model. Numer. Anal. 2019, 53, 1351–1371. [Google Scholar] [CrossRef]
- Li, H.; Liu, H. On anomalous localized resonance and plasmonic cloaking beyond the quasi-static limit. Proc. R. Soc. A 2018, 474, 20180165. [Google Scholar] [CrossRef]
Filler | Manufacturer | Allotrope | Specific Surface Area in | Data Sheet |
---|---|---|---|---|
Recycled carbon fiber | R&G Waldenbuch, Germany | rCF | 0.3 *1 | [19] |
Ensaco 350G | Imerys, Paris, France | CB | 770 | [20] |
NC7000 | Nanocyl, Sambreville, Belgium | MWCNT | 250–300 | [21] |
Tuball | OCSiAl, Luxembourg | SWCNT | 500–1000 | [22] |
Miralon Pulp | Huntsman, Salt Lake City, UT, USA | n.a. | 200 | [23] |
Athlos CNS | Cabot, Boston, MA, USA | n.a. | 200 | [24] |
Run | Shear Gap 1 in µm | Shear Gap 2 in µm | Number of Revolutions n3 in min−1 |
---|---|---|---|
1 | 90 | 30 | 90 |
2 | 60 | 20 | 90 |
3 | 30 | 10 | 90 |
4 | 15 | 5 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seidel, R.; Katzer, K.; Bieck, J.; Langer, M.; Hesselbach, J.; Heilig, M. Influence of Carbon-Based Fillers on the Electromagnetic Shielding Properties of a Silicone-Potting Compound. Materials 2024, 17, 280. https://doi.org/10.3390/ma17020280
Seidel R, Katzer K, Bieck J, Langer M, Hesselbach J, Heilig M. Influence of Carbon-Based Fillers on the Electromagnetic Shielding Properties of a Silicone-Potting Compound. Materials. 2024; 17(2):280. https://doi.org/10.3390/ma17020280
Chicago/Turabian StyleSeidel, Rafael, Konrad Katzer, Jakob Bieck, Maurice Langer, Julian Hesselbach, and Michael Heilig. 2024. "Influence of Carbon-Based Fillers on the Electromagnetic Shielding Properties of a Silicone-Potting Compound" Materials 17, no. 2: 280. https://doi.org/10.3390/ma17020280
APA StyleSeidel, R., Katzer, K., Bieck, J., Langer, M., Hesselbach, J., & Heilig, M. (2024). Influence of Carbon-Based Fillers on the Electromagnetic Shielding Properties of a Silicone-Potting Compound. Materials, 17(2), 280. https://doi.org/10.3390/ma17020280