Flexible Transparent Electrode Based on Ag Nanowires: Ag Nanoparticles Co-Doped System for Organic Light-Emitting Diodes
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Characterization
2.3. Preparation of FTEs
2.4. Preparation of FOLEDs
3. Results and Discussion
3.1. Characterization of FTEs
3.2. Characterization of FOLEDs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, C.W.; VanSlyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Song, J.-K.; Kim, M.S.; Yoo, S.; Koo, J.H.; Kim, D.-H. Materials and devices for flexible and stretchable photodetectors and light-emitting diodes. Nano Res. 2021, 14, 2919–2937. [Google Scholar] [CrossRef]
- Wang, T.; Lu, K.; Xu, Z.; Lin, Z.; Ning, H.; Qiu, T.; Yang, Z.; Zheng, H.; Yao, R.; Peng, J. Recent Developments in Flexible Transparent Electrode. Crystals 2021, 11, 511. [Google Scholar] [CrossRef]
- Ilatovskii, D.A.; Gilshtein, E.P.; Glukhova, O.E.; Nasibulin, A.G. Transparent Conducting Films Based on Carbon Nanotubes: Rational Design toward the Theoretical Limit. Adv. Sci. 2022, 9, e2201673. [Google Scholar] [CrossRef] [PubMed]
- Sharif, P.; Alemdar, E.; Ozturk, S.; Caylan, O.; Haciefendioglu, T.; Buke, G.; Aydemir, M.; Danos, A.; Monkman, A.P.; Yildirim, E.; et al. Rational Molecular Design Enables Efficient Blue TADF−OLEDs with Flexible Graphene Substrate. Adv. Funct. Mater. 2022, 32, 2207324. [Google Scholar] [CrossRef]
- Kang, H.; Kim, J.S.; Choi, S.R.; Kim, Y.H.; Kim, D.H.; Kim, J.G.; Lee, T.W.; Cho, J.H. Electroplated core-shell nanowire network electrodes for highly efficient organic light-emitting diodes. Nano Converg. 2022, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.S.; Kim, D.H.; Kim, T.W. Organic light-emitting devices based on conducting polymer treated with benzoic acid. Sci. Rep. 2021, 11, 3885. [Google Scholar] [CrossRef]
- Snarski, L.; Biran, I.; Bendikov, T.; Pinkas, I.; Iron, M.A.; Kaplan-Ashiri, I.; Weissman, H.; Rybtchinski, B. Highly Conductive Robust Carbon Nanotube Networks for Strong Buckypapers and Transparent Electrodes. Adv. Funct. Mater. 2023, 2309742. [Google Scholar] [CrossRef]
- Kopylova, D.S.; Satco, D.A.; Khabushev, E.M.; Bubis, A.V.; Krasnikov, D.V.; Kallio, T.; Nasibulin, A.G. Electrochemical enhancement of optoelectronic performance of transparent and conducting single-walled carbon nanotube films. Carbon 2020, 167, 244–248. [Google Scholar] [CrossRef]
- Kim, M.; Jeong, J.; Hyun, G.; Jeon, J.H.; Jerng, S.-K.; Chun, S.-H.; Yi, Y.; Lee, H. Work function tuning of directly grown graphene via ultraviolet–ozone treatment for electrode application in organic photovoltaic devices. Surf. Interfaces 2023, 41, 103228. [Google Scholar] [CrossRef]
- Festinger, N.; Kisielewska, A.; Burnat, B.; Ranoszek-Soliwoda, K.; Grobelny, J.; Koszelska, K.; Guziejewski, D.; Smarzewska, S. The Influence of Graphene Oxide Composition on Properties of Surface-Modified Metal Electrodes. Materials 2022, 15, 7684. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.Y.; Myung, J.H.; Sun, J.Y.; Yu, W.R. Highly Stretchable, Conductive, and Transparent PDMS Island-Continuous PEDOT:PSS Matrix Composite Electrodes. Adv. Mater. Technol. 2023, 8, 2300129. [Google Scholar] [CrossRef]
- Ali, M.Z.; Ku Ishak, K.M.; Md Zawawi, M.A.; Zulkifli, Z.; Jaafar, M.; Ahmad, Z. Single-step treatment to improve conductivity of PEDOT:PSS by hydrobromic acid solution for application of transparent electrode. Org. Electron. 2022, 110, 106643. [Google Scholar] [CrossRef]
- Kianpisheh, M.; Rezaei, B.; Babaei, Z.; Asadi, K.; Afshar-Taromi, F.; Sharifi Dehsari, H. Mechanically stable solution-processed transparent conductive electrodes for optoelectronic applications. Synth. Met. 2021, 278, 116805. [Google Scholar] [CrossRef]
- Fox, D.W.; Schropp, A.A.; Joseph, T.; Azim, N.; Li Sip, Y.Y.; Zhai, L. Uniform Deposition of Silver Nanowires and Graphene Oxide by Superhydrophilicity for Transparent Conductive Films. ACS Appl. Nano Mater. 2021, 4, 7628–7639. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Wang, K.; Lin, K.; Xie, H.; Zhang, X.; Li, J. Novel Insights into Inkjet Printed Silver Nanowires Flexible Transparent Conductive Films. Int. J. Mol. Sci. 2021, 22, 7719. [Google Scholar] [CrossRef]
- Ju, Y.-M.; Park, J.-W.; Jang, Y.-R.; Park, S.S.; Kim, H.-S. Intense Pulsed Light Welding Process with Mechanical Roll-Pressing for Highly Conductive Silver Nanowire Transparent Electrode. Int. J. Pr. Eng. Man-GT. 2023, 11, 203–219. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Kong, X.; Gong, M.; Zhang, L.; Lin, X.; Wang, D. Origin of Capillary-Force-Induced Welding in Ag Nanowires and Ag Nanowire/Carbon Nanotube Conductive Networks. Langmuir 2022, 38, 12682–12688. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Chu, D.T.; Nguyen, T.H.N.; Duong, T.T.; Doan, Q.T.; Nguyen, D.C. Highly Selective Welding of Ultralong Silver Nanowire Transparent Conductive Electrodes by Electroplating. J. Electron. Mater. 2023, 52, 7676–7682. [Google Scholar] [CrossRef]
- Liu, G.-S.; Wang, T.; Wang, Y.; Zheng, H.; Chen, Y.; Zeng, Z.; Chen, L.; Chen, Y.; Yang, B.-R.; Luo, Y.; et al. One-step plasmonic welding and photolithographic patterning of silver nanowire network by UV-programable surface atom diffusion. Nano Res. 2021, 15, 2582–2591. [Google Scholar] [CrossRef]
- Kim, H.G.; Kim, M.; Kim, S.S.; Paek, S.H.; Kim, Y.C. Silver nanowire/PEDOT:PSS hybrid electrode for flexible organic light-emitting diodes. J. Sci. Adv. Mater. Devices 2021, 6, 372–378. [Google Scholar] [CrossRef]
- Kang, M.; Lee, H.; Hong, S.; Choi, J. Molecular mechanics of Ag nanowire transfer processes subjected to contact loading by a PDMS substrate. Nanoscale Horiz 2022, 7, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.-H.; Choi, H.; Kim, J.Y.; Lee, T.-W. Silver-Based Nanoparticles for Surface Plasmon Resonance in Organic Optoelectronics. Part Part Syst. Char. 2015, 32, 164–175. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Cho, Y.-H.; Chung, T.-H.; Jang, Y.J.; Kim, W.H.; Bang, S.; Lee, A.; Jeong, M.S.; Ryou, J.-H.; Kwon, M.-K. Localized surface plasmon-enhanced transparent conducting electrode for high-efficiency light emitting diode. Mater. Lett. 2020, 271, 127790. [Google Scholar] [CrossRef]
- Kim, A.; Won, Y.; Woo, K.; Jeong, S.; Moon, J. All-Solution-Processed Indium-Free Transparent Composite Electrodes based on Ag Nanowire and Metal Oxide for Thin-Film Solar Cells. Adv. Funct. Mater. 2014, 24, 2462–2471. [Google Scholar] [CrossRef]
- Lee, D.; Youn, D.-Y.; Luo, Z.; Kim, I.-D. Highly flexible transparent electrodes using a silver nanowires-embedded colorless polyimide film via chemical modification. RSC Adv. 2016, 6, 30331–30336. [Google Scholar] [CrossRef]
- Yoon, S.-S.; Khang, D.-Y. Ag nanowire/PEDOT:PSS bilayer transparent electrode for high performance Si-PEDOT:PSS hybrid solar cells. J. Phys. Chem. Solids 2019, 129, 128–132. [Google Scholar] [CrossRef]
- Zeng, G.; Chen, W.; Chen, X.; Hu, Y.; Chen, Y.; Zhang, B.; Chen, H.; Sun, W.; Shen, Y.; Li, Y.; et al. Realizing 17.5% Efficiency Flexible Organic Solar Cells via Atomic-Level Chemical Welding of Silver Nanowire Electrodes. J. Am. Chem. Soc. 2022, 144, 8658–8668. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Pan, Y.; Xie, F.; Zhang, Y.; Zhao, J.; Wen, S.; Gao, F. Performance Enhancement of Silver Nanowire-Based Transparent Electrodes by Ultraviolet Irradiation. Nanomaterials 2022, 12, 2956. [Google Scholar] [CrossRef]
- Hu, J.-t.; Li, J.; Zhang, G.-g.; Xu, K.; Wang, X.-h. Research on flexible silver nanowire electrode for organic light-emitting devices. Optoelectron. Lett. 2021, 17, 70–74. [Google Scholar] [CrossRef]
- Yildirim, E.; Wu, G.; Yong, X.; Tan, T.L.; Zhu, Q.; Xu, J.; Ouyang, J.; Wang, J.-S.; Yang, S.-W. A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS. J. Mater. Chem. C 2018, 6, 5122–5131. [Google Scholar] [CrossRef]
- Lingstedt, L.V.; Ghittorelli, M.; Lu, H.; Koutsouras, D.A.; Marszalek, T.; Torricelli, F.; Crăciun, N.I.; Gkoupidenis, P.; Blom, P.W.M. Effect of DMSO Solvent Treatments on the Performance of PEDOT:PSS Based Organic Electrochemical Transistors. Adv. Electron. Mater. 2019, 5, 1800804. [Google Scholar] [CrossRef]
- Li, J.; Tao, Y.; Chen, S.; Li, H.; Chen, P.; Wei, M.-z.; Wang, H.; Li, K.; Mazzeo, M.; Duan, Y. A flexible plasma-treated silver-nanowire electrode for organic light-emitting devices. Sci. Rep. 2017, 7, 16468. [Google Scholar] [CrossRef]
- Guan, P.; Zhu, R.; Zhu, Y.; Chen, F.; Wan, T.; Xu, Z.; Joshi, R.; Han, Z.; Hu, L.; Wu, T.; et al. Performance degradation and mitigation strategies of silver nanowire networks: A review. Crit. Rev. Solid State Mater. Sci. 2021, 47, 435–459. [Google Scholar] [CrossRef]
- Areum, K.; Yulim, W.; Kyoohee, W.; Chul-Hong, K.; Jooho, M. Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano. 2013, 7, 1081–1091. [Google Scholar] [CrossRef]
- Wu, S.; Li, Y.; Lian, H.; Leveque, G.; Grandidier, B.; Adam, P.M.; Gerard, D.; Bachelot, R.; Xu, T.; Wei, B. Hybrid nanostructured plasmonic electrodes for flexible organic light-emitting diodes. Nanotechnology 2020, 31, 375203. [Google Scholar] [CrossRef]
- Kim, T.; Kang, S.; Heo, J.; Cho, S.; Kim, J.W.; Choe, A.; Walker, B.; Shanker, R.; Ko, H.; Kim, J.Y. Nanoparticle-Enhanced Silver-Nanowire Plasmonic Electrodes for High-Performance Organic Optoelectronic Devices. Adv. Mater. 2018, 30, e1800659. [Google Scholar] [CrossRef]
Method | Average Sheet Resistance (ohm/sq) | Transmittance at 550 nm (%) | |
---|---|---|---|
ITO | 15 | 86 | 160.437 |
Methanol impregnation | 14.72 | 83.855 | 139.1435 |
Argon plasma treatment | 14.46 | 83.803 | 141.1259 |
Ultraviolet radiation | 17.7 | 85.196 | 127.6885 |
Device | Turn-On (V) | Luminance (cd/m2) | LE (cd/A) (Max) | EQE (%) (Max) |
---|---|---|---|---|
ITO | 3.2 | 21830 | 4.10603 | 1.31403 |
Ag NWs: Ag NPs/PEDOT: PSS/DMSO | 3.0 | 8622 | 6.03747 | 1.92450 |
Ag NWs/PEDOT: PSS/DMSO | 3.1 | 8631 | 4.60186 | 1.55811 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Xing, X.; Sun, Y.; Liu, Y.; Wang, Y.; Li, S.; Wang, W. Flexible Transparent Electrode Based on Ag Nanowires: Ag Nanoparticles Co-Doped System for Organic Light-Emitting Diodes. Materials 2024, 17, 505. https://doi.org/10.3390/ma17020505
Wu Z, Xing X, Sun Y, Liu Y, Wang Y, Li S, Wang W. Flexible Transparent Electrode Based on Ag Nanowires: Ag Nanoparticles Co-Doped System for Organic Light-Emitting Diodes. Materials. 2024; 17(2):505. https://doi.org/10.3390/ma17020505
Chicago/Turabian StyleWu, Ziye, Xiaolin Xing, Yingying Sun, Yunlong Liu, Yongqiang Wang, Shuhong Li, and Wenjun Wang. 2024. "Flexible Transparent Electrode Based on Ag Nanowires: Ag Nanoparticles Co-Doped System for Organic Light-Emitting Diodes" Materials 17, no. 2: 505. https://doi.org/10.3390/ma17020505
APA StyleWu, Z., Xing, X., Sun, Y., Liu, Y., Wang, Y., Li, S., & Wang, W. (2024). Flexible Transparent Electrode Based on Ag Nanowires: Ag Nanoparticles Co-Doped System for Organic Light-Emitting Diodes. Materials, 17(2), 505. https://doi.org/10.3390/ma17020505