Chromatic Adaption of Two Universal Composites: Spectrophotometric Analysis
Abstract
:1. Introduction
- -
- Analyze the differences in terms of chromatic adaptation between the two resins at different time intervals (inter-group analysis);
- -
- Analyze the differences in terms of chromatic adaptation for each resin at different time intervals (intra-group analysis).
2. Materials and Methods
- -
- Cervical margin located 1 mm from the CEJ (Cementoenamel Junction).
- -
- Enamel–dentin depth of 4 mm.
- -
- Mesio-distal width of 4 mm.
- -
- Corono-apical height of 2.5 mm.
- -
- Groups 1 and 2: Selective etching with Tokuyama Etching Gel HV (Tokuyama Dental Corporation Inc., Tokyo, Japan): 30 s on enamel and 15 s on dentin;
- -
- Groups 1 and 2: Rinse for 60 s with water;
- -
- Groups 1 and 2: Adhesive procedure with Tokuyama EE Bond (Tokuyama Dental Corporation Inc., Tokyo, Japan): 10 s on the entire cavity surface and air drying;
- -
- Groups 1 and 2: Polymerization for 20 s according to the manufacturers’ instructions;
- -
- Restoration with:
- ○
- Group 1: Incremental layering of Omnichroma composite and polymerization for 20 s for each increment (Group 1);
- ○
- Group 2: A single application of Estelite Bulk-Fill Flow Universal followed by polymerization for 20 s (Group 2);
- -
- Groups 1 and 2: Finishing and polishing with 2-step polishing system Enhance PoGo disks (Dentsply Caulk, Milford, DE, USA).
- -
- T0: Initial color of the tooth after polishing;
- -
- T1: Color immediately after the Class V restoration;
- -
- T2: Color 24 h after the restoration;
- -
- T3: Color after thermocycling procedure.
2.1. Inter-Groups Evaluation
- -
- ΔE(T0–T1);
- -
- ΔE(T0–T2);
- -
- ΔE(T0–T3).
- -
- ΔE(T0–T1)O vs. ΔE(T0–T1)E;
- -
- ΔE(T0–T2)O vs. ΔE(T0–T2)E;
- -
- ΔE(T0–T3)O vs. ΔE(T0–T3)E.
2.2. Intra-Group Evaluation
- -
- T1ΔEAB;
- -
- T2ΔEAB;
- -
- T3ΔEAB.
- -
- T1ΔEABO vs. T2ΔEABO vs. T3ΔEABO
- -
- T1ΔEABE vs. T2ΔEABE vs. T3ΔEABE
2.3. Statistical Analysis
- -
- A Student’s t-test to assess the differences in the ΔE(T0–T1) between each group;
- -
- A Wilcoxon–Mann–Whitney test to evaluate the differences in the ΔE(T0–T2) and ΔE(T0–T3) between each group.
- -
- A Kruskal–Wallis test to assess the difference in ΔE for each element within Group 1 at different timepoints;
- -
- A two-way ANOVA to evaluate the difference in ΔE for each element within Group 2 at different timepoints.
3. Results
3.1. Inter-Group Analysis
3.2. Intra-Group Analysis
4. Discussion
- -
- In Group 1, an average ΔE value > 2 was observed in every comparison, which, according to the study’s threshold, indicates a clinically unacceptable result. The best result was obtained in the second comparison after storing the sample for 24 h in a physiological solution. It is worth noting an increase in ΔE values at the T0–T1 and T0–T3 intervals, suggesting that the color stability of the Omnichroma composite appears to decrease after thermocycling but benefits from a 24 h restoration period. This is likely due to water absorption by the resin, which improves its color properties.
- -
- In Group 2, an average ΔE value > 2 was observed in every comparison, which indicates a clinically unacceptable result according to the study’s threshold. The best result was obtained in the second comparison after storing the sample for 24 h in saline solution, likely for the same reasons mentioned above. However, the average ΔE values for Estelite restorations consistently decreased over different intervals.
- -
- In Group 1, there was a progressive decrease in the average ΔEAB value, with lower values recorded after the thermocycling procedure. However, an average ΔEAB > 2 was recorded in every comparison, indicating a clinically unacceptable result according to the study’s threshold.
- -
- In Group 2, there was a progressive decrease in the average ΔEAB value, with lower values recorded after the thermocycling procedure. However, an average ΔEAB > 2 was recorded in every comparison, indicating a clinically unacceptable result according to the study’s threshold.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morresi, A.L.; D’Amario, M.; Capogreco, M.; Gatto, R.; Marzo, G.; D’Arcangelo, C.; Monaco, A. Thermal Cycling for Restorative Materials: Does a Standardized Protocol Exist in Laboratory Testing? A Literature Review. J. Mech. Behav. Biomed. Mater. 2014, 29, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Stewardson, D.A.; Shortall, A.C.; Marquis, P.M. The Effect of Clinically Relevant Thermocycling on the Flexural Properties of Endodontic Post Materials. J. Dent. 2010, 38, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Kim-Pusateri, S.; Brewer, J.D.; Davis, E.L.; Wee, A.G. Reliability and Accuracy of Four Dental Shade-Matching Devices. J. Prosthet. Dent. 2009, 101, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Khurana, R.; Tredwin, C.J.; Weisbloom, M.; Moles, D.R. A Clinical Evaluation of the Individual Repeatability of Three Commercially Available Colour Measuring Devices. Br. Dent. J. 2007, 203, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huang, J.; Dong, X.; Qian, J.; He, J.; Qu, X.; Lu, E. A Systematic Review of Visual and Instrumental Measurements for Tooth Shade Matching. Quintessence Int. 2012, 43, 649–659. [Google Scholar]
- Knösel, M.; Eckstein, A.; Helms, H.-J. Durability of Esthetic Improvement Following Icon Resin Infiltration of Multibracket-Induced White Spot Lesions Compared with No Therapy over 6 Months: A Single-Center, Split-Mouth, Randomized Clinical Trial. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 86–96. [Google Scholar] [CrossRef]
- Ragain, J.C.; Johnston, W.M. Color Acceptance of Direct Dental Restorative Materials by Human Observers. Color Res. Appl. 2000, 25, 278–285. [Google Scholar] [CrossRef]
- Vichi, A.; Ferrari, M.; Davidson, C.L. Influence of Ceramic and Cement Thickness on the Masking of Various Types of Opaque Posts. J. Prosthet. Dent. 2000, 83, 412–417. [Google Scholar] [CrossRef]
- Barath, V.S.; Faber, F.-J.; Westland, S.; Niedermeier, W. Spectrophotometric Analysis of All-Ceramic Materials and Their Interaction with Luting Agents and Different Backgrounds. Adv. Dent. Res. 2003, 17, 55–60. [Google Scholar] [CrossRef]
- Zulekha; Vinay, C.; Uloopi, K.S.; RojaRamya, K.S.; Penmatsa, C.; Ramesh, M.V. Clinical Performance of One Shade Universal Composite Resin and Nanohybrid Composite Resin as Full Coronal Esthetic Restorations in Primary Maxillary Incisors: A Randomized Controlled Trial. J. Indian Soc. Pedod. Prev. Dent. 2022, 40, 159–164. [Google Scholar] [CrossRef]
- de Abreu, J.L.B.; Sampaio, C.S.; Benalcázar Jalkh, E.B.; Hirata, R. Analysis of the Color Matching of Universal Resin Composites in Anterior Restorations. J. Esthet. Restor. Dent. 2021, 33, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Iyer, R.S.; Babani, V.R.; Yaman, P.; Dennison, J. Color Match Using Instrumental and Visual Methods for Single, Group, and Multi-Shade Composite Resins. J. Esthet. Restor. Dent. 2021, 33, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Pereira Sanchez, N.; Powers, J.M.; Paravina, R.D. Instrumental and Visual Evaluation of the Color Adjustment Potential of Resin Composites. J. Esthet. Restor. Dent. 2019, 31, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Anwar, R.S.; Hussein, Y.F.; Riad, M. Optical Behavior and Marginal Discoloration of a Single Shade Resin Composite with a Chameleon Effect: A Randomized Controlled Clinical Trial. BDJ Open 2024, 10, 11. [Google Scholar] [CrossRef]
- Saegusa, M.; Kurokawa, H.; Takahashi, N.; Takamizawa, T.; Ishii, R.; Shiratsuchi, K.; Miyazaki, M. Evaluation of Color-Matching Ability of a Structural Colored Resin Composite. Oper. Dent. 2021, 46, 306–315. [Google Scholar] [CrossRef]
- Perez, B.G.; Gaidarji, B.; Palm, B.G.; Ruiz-López, J.; Pérez, M.M.; Durand, L.B. Masking Ability of Resin Composites: Effect of the Layering Strategy and Substrate Color. J. Esthet. Restor. Dent. 2022, 34, 1206–1212. [Google Scholar] [CrossRef]
- Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Monjarás-Ávila, A.J.; Zarow, M.; Jakubowicz, N.; Jorquera, G.; Ashi, T.; Mancino, D.; et al. Novel Trends in Dental Color Match Using Different Shade Selection Methods: A Systematic Review and Meta-Analysis. Materials 2022, 15, 468. [Google Scholar] [CrossRef]
- Lowe, R.A. OMNICHROMA: One Composite That Covers All Shades for an Anterior Tooth. Compend. Contin. Educ. Dent. 2019, 40, 8–10. [Google Scholar]
- Lee, Y.-K. Opalescence of Human Teeth and Dental Esthetic Restorative Materials. Dent. Mater. J. 2016, 35, 845–854. [Google Scholar] [CrossRef]
- Zotti, F.; Ferrari, F.; Paganelli, C.; Pilati, F.; Lanzaretti, G.; Arlacchi, D.; Zerman, N. Increasing the Fracture Strength of MOD Restorations with Ribbond Fibers. J. Clin. Exp. Dent. 2024, 16, e707–e713. [Google Scholar] [CrossRef]
- Rosales-Leal, J.I.; Del Castillo-Salmerón, R.; Molino-Serrano, M.A.; González-Moreira, H.; Cabrerizo-Vílchez, M.A. Effect of Hygroscopic Expansion of Resin Filling on Interfacial Gap and Sealing: A Confocal Microscopy Study. J. Adhes. Dent. 2013, 15, 423–430. [Google Scholar] [CrossRef] [PubMed]
- AlHabdan, A.; AlShamrani, A.; AlHumaidan, R.; AlFehaid, A.; Eisa, S. Color Matching of Universal Shade Resin-Based Composite with Natural Teeth and Its Stability before and after In-Office Bleaching. Int. J. Biomater. 2022, 2022, 8420890. [Google Scholar] [CrossRef] [PubMed]
- ISO/TS 11405; Dentistry—Testing of Adhesion to Tooth Structure. International Organization for Standardization: Geneva, Switzerland, 2015.
- Zotti, F.; Hu, J.; Zangani, A.; Albanese, M.; Paganelli, C. Fracture Strenght and Ribbond Fibers: In Vitro Analysis of Mod Restorations. J. Clin. Exp. Dent. 2023, 15, e318–e323. [Google Scholar] [CrossRef] [PubMed]
- Bompolaki, D.; Lubisich, E.B.; Fugolin, A.P. Resin-Based Composites for Direct and Indirect Restorations: Clinical Applications, Recent Advances, and Future Trends. Dent. Clin. N. Am. 2022, 66, 517–536. [Google Scholar] [CrossRef]
ΔE T0–T1 | ΔE T0–T2 | ΔE T0–T3 | ||
---|---|---|---|---|
Group 1 (Omnichroma) | O1 | 5.97 | 4.21 | 6.75 |
O2 | 4.22 | 2.59 | 5.39 | |
O3 | 6.52 | 5.26 | 10.4 | |
O4 | 8.95 | 8.92 | 9.66 | |
O5 | 6.37 | 4.9 | 5.82 | |
O6 | 3.57 | 3.22 | 4.65 | |
O7 | 4.58 | 3.58 | 4.16 | |
O8 | 7.68 | 6.38 | 9.96 | |
O9 | 5.31 | 3.92 | 6.52 | |
O10 | 6.65 | 4.97 | 5.7 | |
O11 | 5.2 | 4.52 | 4.4 | |
O12 | 6.58 | 5.69 | 7.08 | |
O13 | 4.22 | 1.56 | 2.39 | |
O14 | 3.99 | 3.74 | 4.48 | |
O15 | 6.11 | 4.4 | 4.65 | |
O16 | 4.29 | 4.09 | 5.2 | |
O17 | 4.64 | 2.82 | 1.66 | |
Group 2 (Estelite) | E1 | 3.98 | 2.88 | 3.31 |
E2 | 5.4 | 3.65 | 3.85 | |
E3 | 6.23 | 5.29 | 5.15 | |
E4 | 6.96 | 3.06 | 2.63 | |
E5 | 4.94 | 5.4 | 4.58 | |
E6 | 5.1 | 4.17 | 5.62 | |
E7 | 5.08 | 4.15 | 4.58 | |
E8 | 6.81 | 6.28 | 5.83 | |
E9 | 4.11 | 5.58 | 4.16 | |
E10 | 9.61 | 10.01 | 10.12 | |
E11 | 5.61 | 6.16 | 6.74 | |
E12 | 5.51 | 6.03 | 6.66 | |
E13 | 5.03 | 4.47 | 4.9 | |
E14 | 5.26 | 3.88 | 5.06 | |
E15 | 9.08 | 8.38 | 8.72 | |
E16 | 5.83 | 4.85 | 5.25 | |
E17 | 1.51 | 3.06 | 3.56 |
T1 ΔEAB | T2 ΔEAB | T2 ΔEAB | ||
---|---|---|---|---|
Group 1 (Omnichroma) | O1 | 3.98 | 2.88 | 5.12 |
O2 | 5.4 | 3.65 | 12.14 | |
O3 | 6.23 | 5.29 | 18.96 | |
O4 | 6.96 | 3.06 | 7.37 | |
O5 | 4.94 | 5.4 | 7.3 | |
O6 | 5.1 | 4.17 | 7.5 | |
O7 | 5.08 | 4.15 | 14.23 | |
O8 | 6.81 | 6.28 | 5.02 | |
O9 | 4.11 | 5.58 | 10.6 | |
O10 | 9.61 | 10.01 | 6.56 | |
O11 | 5.61 | 6.16 | 2.11 | |
O12 | 5.51 | 6.03 | 3.95 | |
O13 | 5.03 | 4.47 | 7.35 | |
O14 | 5.26 | 3.88 | 5.32 | |
O15 | 9.08 | 8.38 | 2.51 | |
O16 | 5.83 | 4.85 | 5.18 | |
O17 | 4.96 | 6.44 | 5.33 | |
Group 2 (Estelite) | E1 | 4.34 | 2.53 | 4.55 |
E2 | 4.11 | 8.13 | 4.79 | |
E3 | 5.12 | 4.5 | 4.01 | |
E4 | 10.09 | 6.67 | 7.31 | |
E5 | 8.74 | 6.36 | 6.18 | |
E6 | 13.22 | 11.47 | 11.86 | |
E7 | 13.88 | 14.81 | 13.17 | |
E8 | 11.38 | 12.03 | 9.52 | |
E9 | 12.29 | 10.7 | 10.57 | |
E10 | 4.76 | 6.16 | 4.89 | |
E11 | 6.39 | 5.39 | 5.03 | |
E12 | 3.07 | 3.67 | 2.53 | |
E13 | 5.84 | 6.28 | 3.91 | |
E14 | 12.51 | 10.81 | 12.07 | |
E15 | 12.85 | 11.41 | 13.74 | |
E16 | 2.88 | 2.22 | 6.1 | |
E17 | 1.52 | 1.22 | 2.32 |
Mean Value | SD | p-Value (O vs. E) | |
---|---|---|---|
ΔE T0–T1 O | 5.579412 | 1.455268 | 0.16154 |
ΔE T0–T1 E | 5.65 | 1.852849 | |
ΔE T0–T2 O | 4.419412 | 1.636782 | 0.01467 |
ΔE T0–T2 E | 5.135294 | 1.898223 | |
ΔE T0–T3 O | 5.815882 | 2.433663 | 0.02580 |
ΔE T0–T3 E | 5.336471 | 1.90412 |
Mean Value | SD | p-Value | ||
---|---|---|---|---|
Group 1 (Omnichroma) | T1ΔEABO | 7.971765 | 3.378611 | 0.03289 |
T2ΔEABO | 8.065882 | 3.037476 | 0.37219 | |
T3ΔEABO | 7.444118 | 4.343725 | 0.02314 | |
Group 2 (Estelite) | T1ΔEABE | 7.822941 | 4.235149 | 0.07312 |
T2ΔEABE | 7.315294 | 3.964138 | 0.50232 | |
T3ΔEABE | 7.208824 | 3.810713 | 0.06379 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zotti, F.; Ferrari, F.; Penazzo, M.; Lanzaretti, G.; Zerman, N. Chromatic Adaption of Two Universal Composites: Spectrophotometric Analysis. Materials 2024, 17, 5103. https://doi.org/10.3390/ma17205103
Zotti F, Ferrari F, Penazzo M, Lanzaretti G, Zerman N. Chromatic Adaption of Two Universal Composites: Spectrophotometric Analysis. Materials. 2024; 17(20):5103. https://doi.org/10.3390/ma17205103
Chicago/Turabian StyleZotti, Francesca, Francesca Ferrari, Mattia Penazzo, Giorgia Lanzaretti, and Nicoletta Zerman. 2024. "Chromatic Adaption of Two Universal Composites: Spectrophotometric Analysis" Materials 17, no. 20: 5103. https://doi.org/10.3390/ma17205103
APA StyleZotti, F., Ferrari, F., Penazzo, M., Lanzaretti, G., & Zerman, N. (2024). Chromatic Adaption of Two Universal Composites: Spectrophotometric Analysis. Materials, 17(20), 5103. https://doi.org/10.3390/ma17205103