Impact of Speed Sintering on Translucency, Opalescence and Microstructure of Dental Zirconia with a Combination of 5 mol% and 3 mol% Yttria-Stabilized Zirconia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Optical Characteristics Analysis
2.3. Microstructural Analysis
2.4. Crystallographic Analysis
2.5. Statistical Analysis
3. Results
3.1. Optical Characteristics
3.2. Microstructure
3.3. Crystal Structure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, Y.K. Translucency of human teeth and dental restorative materials and its clinical relevance. J. Biomed. Opt. 2015, 20, 045002. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Yu, B. Measurement of opalescence of tooth enamel. J. Dent. 2007, 35, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K. Opalescence of human teeth and dental esthetic restorative materials. Dent. Mater. J. 2016, 35, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Kim, S.H. Effect of the number of coloring liquid applications on the optical properties of monolithic zirconia. Dent. Mater. 2014, 30, e229–e237. [Google Scholar]
- Kim, H.K.; Kim, S.H.; Lee, J.B.; Ha, S.R. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. J. Prosthet. Dent. 2016, 115, 773–779. [Google Scholar] [CrossRef]
- Cho, M.H.; Seol, H.J. Optical properties, microstructure, and phase fraction of multi-layered monolithic zirconia with and without yttria-gradient. Materials. 2023, 16, 41. [Google Scholar]
- Kongkiatkamon, S.; Rokaya, D.; Kengtanyakich, S.; Peampring, C. Current classification of zirconia in dentistry: An updated review. PeerJ 2023, 11, 15669. [Google Scholar]
- Nakamura, K.; Shishido, S.; Inagaki, R.; Kanno, T.; Barkarmo, S.; Svanborg, P.; Örtengren, U. Critical evaluations on the crystallographic properties of translucent dental zirconia ceramics stabilized with 3–6 mol% yttria. Dent. Mater. 2024, 40, 1425–1451. [Google Scholar]
- Ueda, K.; Guth, J.F.; Erdelt, K.; Stimmelmayr, M.; Kappert, H.; Beuer, F. Light transmittance by a multi-coloured zirconia material. Dent. Mater. J. 2015, 34, 310–314. [Google Scholar] [CrossRef]
- Liu, H.; Inokoshi, M.; Nozaki, K.; Shimizubata, M.; Nakai, H.; Cho Too, T.D.; Minakuchi, S. Influence of high-speed sintering protocols on translucency, mechanical properties, microstructure, crystallography, and low-temperature degradation of highly translucent zirconia. Dent. Mater. 2022, 38, 451–468. [Google Scholar]
- Kolakarnprasert, N.; Kaizer, M.R.; Kim, D.K.; Zhang, Y. New multi-layered zirconias: Composition, microstructure and translucency. Dent. Mater. 2019, 35, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Gomes, I.; Lopes, L.P.; Fonseca, M.; Portugal, J. Effect of Zirconia Pigmentation on Translucency. Eur. J. Prosthodont. Restor. Dent. 2018, 26, 136–142. [Google Scholar] [PubMed]
- Zhang, F.; Reveron, H.; Spies, B.C.; Van Meerbeek, B.; Chevalier, J. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater. 2019, 91, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K. Effect of a rapid-cooling protocol on the optical and mechanical properties of dental monolithic zirconia containing 3–5 mol% Y2O3. Materials 2020, 13, 1923. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent. Mater. 2016, 32, e327–e337. [Google Scholar]
- Elsaka, S.E. Optical and mechanical properties of newly developed monolithic multilayer zirconia. J. Prosthodont. 2019, 28, e279–e284. [Google Scholar] [CrossRef]
- Michailova, M.; Elsayed, A.; Fabel, G.; Edelhoff, D.; Zylla, I.M.; Stawarczyk, B. Comparison between novel strength-gradient and color-gradient multilayered zirconia using conventional and high-speed sintering. J. Mech. Behav. Biomed. Mater. 2020, 111, 103977. [Google Scholar] [CrossRef]
- Alghazzawi, T.F. Advancements in CAD/CAM technology: Options for practical implementation. J. Prosthodont. Res. 2016, 60, 72–84. [Google Scholar] [CrossRef]
- Jansen, J.U.; Lümkemann, N.; Letz, I.; Pfefferle, R.; Sener, B.; Stawarczyk, B. Impact of high-speed sintering on translucency, phase content, grain sizes, and flexural strength of 3Y-TZP and 4Y-TZP zirconia materials. J. Prosthet. Dent. 2019, 122, 396–403. [Google Scholar] [CrossRef]
- Lawson, N.C.; Maharishi, A. Strength and translucency of zirconia after high-speed sintering. J. Esthet. Restor. Dent. 2020, 32, 219–225. [Google Scholar] [CrossRef]
- Cokic, S.M.; Vleugels, J.; Van Meerbeek, B.; Camargo, B.; Willems, E.; Li, M.; Zhang, F. Mechanical properties, aging stability and translucency of speed-sintered zirconia for chairside restorations. Dent. Mater. 2020, 36, 959–972. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.H.; Seol, H.J. Effect of high-speed sintering on the optical properties, microstructure, and phase distribution of multilayered zirconia stabilized with 5 mol% yttria. Materials 2023, 16, 5570. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J.; Kwon, Y.H.; Seol, H.J. Effect of superspeed sintering on translucency, opalescence, microstructure, and phase fraction of multilayered 4 mol% yttria-stabilized tetragonal zirconia polycrystal and 6 mol% yttria-stabilized partially stabilized zirconia ceramics. J. Prosthet. Dent. 2023, 130, 254.e1–254.e10. [Google Scholar] [CrossRef]
- Savas, T.Y.; Aykent, F. Effect of fabrication techniques on the optical properties of zirconia-based systems. J. Prosthet. Dent. 2021, 125, 528.e1–528.e8. [Google Scholar]
- Sanal, F.A.; Kilinc, H. Effect of shade and sintering temperature on the translucency parameter of a novel multi-layered monolithic zirconia in different thicknesses. J. Esthet. Restor. Dent. 2020, 32, 607–614. [Google Scholar] [CrossRef]
- Kim, B.K.; Yun, J.H.; Jung, W.K.; Lim, C.H.; Zhang, Y.; Kim, D.K. Mitigating grain growth in fully stabilized zirconia via a two-step sintering strategy for esthetic dental restorations. Int. J. Appl. Ceram. Technol. 2022, 20, 856–868. [Google Scholar] [CrossRef] [PubMed]
- Lamas, D.G.; Walsöe De Reca, N.E. X-ray diffraction study of compositionally homogeneous, nanocrystalline yttria-doped zirconia powders. J. Mater. Sci. 2000, 35, 5563–5567. [Google Scholar] [CrossRef]
- Howard, C.J.; Hill, R.J.; Reichert, B.E. Structures of the ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction. Acta Crystallogr. Sect. B Struct. Sci. 1988, B44, 116–120. [Google Scholar] [CrossRef]
- Belli, R.; Hurle, K.; Schürrlein, J.; Petschelt, A.; Werbach, K.; Peterlik, H.; Rabe, T.; Mieller, B.; Lohbauer, U. A revised relationship between fracture toughness and Y2O3 content in modern dental zirconias. ChemRxiv 2021. [Google Scholar] [CrossRef]
- Cho, J.H.; Han, J.S.; Yoon, H.I.; Yeo, I.S.L. Effect of phase fraction and grain size on translucency of 3 mol% yttria-stabilized tetragonal zirconia polycrystal. J. Mater. Res. Technol. 2023, 25, 1222–1230. [Google Scholar] [CrossRef]
- Paravina, R.D.; Ghinea, R.; Herrera, L.J.; Bona, A.D.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; Perez, M. Color difference thresholds in dentistry. J. Esthet. Restor. Dent. 2015, 27, S1–S9. [Google Scholar] [CrossRef] [PubMed]
- Chieruzzi, M.; Rallini, M.; Pagano, S.; Eramo, S.; D’Errico, P.; Torre, L.; Kenny, J.M. Mechanical effect of static loading on endodontically treated teeth restored with fiber-reinforced posts. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Martini, A.P.; Souza, F.I.; Anchieta, R.B.; Almeida, E.O.; Freitas, A.C.J.; Rocha, E.P. Influence of resin cement thickness and temperature variation on mechanical behavior of dental ceramic fragment restoration. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 409–417. [Google Scholar] [CrossRef] [PubMed]
Material | Type | Chemical Composition (wt%) | |||
---|---|---|---|---|---|
ZrO2 | HfO2 | Y2O3 | Al2O3 + SiO2 + Others | ||
E.max ZirCAD Prime | 5Y (Incisal zone) | >88 | ≤5 | ≤7 | ≤2.5 |
3Y (Dentin zone) | 88–95.5 | ≤5 | >4.5 | ≤2.5 | |
Cercon ht ML | 5Y (Incisal zone) | >86 | <3 | 9 | <2 |
3Y (Dentin zone) | >90 | <3 | 5 | <2 |
Material | Sintering Speed | Code | Stage | Heating and Cooling Rate (°C/min) | Temp. (°C) | Holding Time (min) |
---|---|---|---|---|---|---|
E.max ZirCAD Prime | Conventional | EC | 1 | 10 | 900 | 30 |
2 | 3 | 1500 | 120 | |||
3 | 10 | 900 | 0 | |||
4 | 8 | 300 | 0 | |||
Speed | ES | 1 | 60 | 1000 | 10 | |
2 | 3 | 1530 | 60 | |||
3 | 50 | 1100 | 0 | |||
4 | 60 | 100 | 0 | |||
Cercon ht ML | Conventional | CC | 1 | 22 | 880 | 0 |
2 | 11 | 1500 | 135 | |||
3 | 99 | 300 | 0 | |||
4 | 25 | 50 | 0 | |||
Speed | CS | 1 | 23 | 1100 | 0 | |
2 | 14 | 1350 | 0 | |||
3 | 7 | 1520 | 35 | |||
4 | 99 | 750 | 0 |
Source of Variation | Type III Sum of Squares | Degree of Freedom | Mean Square | F-Statistic | p-Value |
---|---|---|---|---|---|
Corrected model | 20.932 a | 11 | 1.903 | 81.144 | <0.001 |
Intercept | 4195.550 | 1 | 4195.550 | 178,908.349 | <0.001 |
Material | 6.036 | 1 | 6.036 | 257.376 | <0.001 |
Speed | 0.151 | 1 | 0.151 | 6.439 | 0.014 |
Layer | 14.040 | 2 | 7.020 | 299.342 | <0.001 |
Material × Speed | 0.389 | 1 | 0.389 | 16.580 | <0.001 |
Material × Layer | 0.140 | 2 | 0.070 | 2.984 | 0.060 |
Speed × Layer | 0.005 | 2 | 0.002 | 0.105 | 0.901 |
Material × Speed × Layer | 0.172 | 2 | 0.086 | 3.662 | 0.033 |
Error | 1.126 | 48 | 0.023 | ||
Total | 4217.607 | 60 | |||
Corrected total | 22.057 | 59 |
Source of Variation | Type III Sum of Squares | Degree of Freedom | Mean Square | F-Statistic | p-Value |
---|---|---|---|---|---|
Corrected model | 476.018 a | 11 | 43.274 | 163.016 | <0.001 |
Intercept | 16,816.847 | 1 | 16,816.847 | 63,349.639 | <0.001 |
Material | 43.380 | 1 | 43.380 | 163.413 | <0.001 |
Speed | 0.265 | 1 | 0.265 | 0.998 | 0.323 |
Layer | 396.202 | 2 | 198.101 | 746.253 | <0.001 |
Material × Speed | 13.713 | 1 | 13.713 | 51.657 | <0.001 |
Material × Layer | 1.892 | 2 | 0.946 | 3.564 | 0.036 |
Speed × Layer | 0.458 | 2 | 0.229 | 0.863 | 0.428 |
Material × Speed × Layer | 20.108 | 2 | 10.054 | 37.874 | <0.001 |
Error | 12.742 | 48 | 0.265 | ||
Total | 17,305.607 | 60 | |||
Corrected total | 488.760 | 59 |
Code/Layer | IL | DL |
---|---|---|
EC | 1.19 BCb (0.06) | 0.48 Aa (0.03) |
ES | 1.31 Cb (0.10) | 0.51 ABa (0.03) |
CC | 1.15 Bb (0.07) | 0.53 Ba (0.02) |
CS | 1.01 Ab (0.10) | 0.47 Aa (0.04) |
Layer | IL | DL | |||||||
---|---|---|---|---|---|---|---|---|---|
Phase | Code | EC | ES | CC | CS | EC | ES | CC | CS |
Yttria-lean (t) | wt% | 37.28 (0.33) | 39.09 (0.50) | 36.01 (0.58) | 39.48 (0.27) | 76.24 (0.40) | 75.94 (0.46) | 74.22 (0.50) | 76.99 (0.23) |
Axial ratio | 1.0151 | 1.0153 | 1.0157 | 1.0155 | 1.0161 | 1.0157 | 1.0156 | 1.0150 | |
Y2O3 (mol%) | 2.81 | 2.72 | 2.58 | 2.63 | 2.43 | 2.56 | 2.60 | 2.83 | |
Yttria-rich (t′) | wt% | 62.72 (0.33) | 60.91 (0.50) | 63.99 (0.58) | 60.52 (0.27) | 23.76 (0.40) | 24.06 (0.46) | 25.78 (0.50) | 23.01 (0.23) |
Axial ratio | 1.0052 | 1.0055 | 1.0051 | 1.0056 | 1.0041 | 1.0049 | 1.0055 | 1.0052 | |
Y2O3 (mol%) | 6.93 | 6.81 | 6.99 | 6.77 | 7.41 | 7.06 | 6.82 | 6.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, M.-H.; Seol, H.-J. Impact of Speed Sintering on Translucency, Opalescence and Microstructure of Dental Zirconia with a Combination of 5 mol% and 3 mol% Yttria-Stabilized Zirconia. Materials 2024, 17, 5148. https://doi.org/10.3390/ma17215148
Cho M-H, Seol H-J. Impact of Speed Sintering on Translucency, Opalescence and Microstructure of Dental Zirconia with a Combination of 5 mol% and 3 mol% Yttria-Stabilized Zirconia. Materials. 2024; 17(21):5148. https://doi.org/10.3390/ma17215148
Chicago/Turabian StyleCho, Mi-Hyang, and Hyo-Joung Seol. 2024. "Impact of Speed Sintering on Translucency, Opalescence and Microstructure of Dental Zirconia with a Combination of 5 mol% and 3 mol% Yttria-Stabilized Zirconia" Materials 17, no. 21: 5148. https://doi.org/10.3390/ma17215148
APA StyleCho, M. -H., & Seol, H. -J. (2024). Impact of Speed Sintering on Translucency, Opalescence and Microstructure of Dental Zirconia with a Combination of 5 mol% and 3 mol% Yttria-Stabilized Zirconia. Materials, 17(21), 5148. https://doi.org/10.3390/ma17215148