A Review of Simulation Tools for Thin-Film Solar Cells
Abstract
:1. Introduction
2. Methodology
3. General Aspects of Numerical Simulation
3.1. Types of Photovoltaic Cells and Materials
3.2. Types of Modeling Used in the Simulation
- Electronic and Optical Properties Modeling
- (a)
- Band Diagram Modeling: visualization of the energy band structure, including conduction and valence bands, Fermi levels, and band-bending effects.
- (b)
- Quantum Efficiency (QE) Modeling: calculation of the external and internal quantum efficiency helps us understand the wavelength-dependent response of the solar cell.
- (c)
- Spectral Response Modeling: evaluation of the spectral response to determine how different wavelengths of light affect the photocurrent generation.
- (d)
- Optical Modeling: incorporation of optical properties, such as absorption, reflection, and transmission of light within the solar cell structure, is essential for designing anti-reflective coatings.
- (e)
- Light Trapping and Scattering Modeling: incorporation of light trapping and scattering mechanisms enhances absorption in thin-film solar cells.
- Electrical and Transport Phenomena Modeling
- (a)
- Current–Voltage (I–V) Modeling: this technique involves analyzing the current–voltage characteristics under various illumination and temperature conditions, which is crucial for evaluating cell efficiency and performance.
- (b)
- Electrical Modeling: simulates the electronic behavior of solar cells, including charge transport, generation, and recombination.
- (c)
- Carrier Transport Modeling: simulating carrier transport mechanisms, including Drift–Diffusion equations for electrons and holes, allows for the analysis of recombination and generation rates.
- (d)
- Recombination Mechanism Modeling: detailed analysis of recombination mechanisms, including Shockley–Read–Hall, Auger, and radiative recombination, to understand loss mechanisms and improve efficiency.
- (e)
- Series and Shunt Resistance Modeling: analysis of the impact of series and shunt resistances on the I–V characteristics and overall efficiency.
- (f)
- Material Properties Modeling: simulation of the influence of different material properties, such as bandgap, mobility, and permittivity, on the performance and efficiency of the solar cell.
- (g)
- Capacitance Modeling: simulation of the capacitance–voltage characteristics provides insights into the charge storage and dielectric properties of the solar cell layers.
- (h)
- Electron Transport Layer (ETL) and Hole Transport Layer (HTL) modeling: ETLs and HTLs are pivotal in charge transport, separation, and recombination [11]. Their thickness, carrier concentration, and associated bulk defects must be adjusted to obtain the best cell performance with superior stability [37].
- Device Structure and Interface Modeling
- (a)
- Doping and Defect Modeling: simulation of the effects of doping concentrations and defect states on the solar cell’s electronic properties and overall performance.
- (b)
- Interface Modeling: examination of the properties and effects of interfaces between different layers in the solar cell, crucial for multi-junction and heterojunction cells.
- (c)
- Multi-Junction Modeling: simulates tandem and multi-junction solar cells, accounting for the interaction between different sub-cells.
- Thermal and Transient Response Modeling
- (a)
- Thermal Modeling: analyzes the thermal effects within solar cells, accounting for heat generation and dissipation.
- (b)
- Transient Response Modeling: modeling of the solar cell’s transient response to changes in illumination or bias conditions, useful for dynamic performance analysis.
- Performance Metric Modeling
- (a)
- Photocurrent and Photovoltage Modeling: analysis of the generation and collection of photocurrent and the development of photovoltage under various illumination conditions.
- (b)
- Lifetime and Degradation Modeling: this technique involves analyzing solar cells’ long-term performance and degradation over time under various environmental and operational conditions.
- Multiscale and Noise Modeling
- (a)
- Multiscale Modeling: this technique combines models at different scales, from quantum mechanical to macroscopic, to capture the full range of phenomena in solar cells.
- (b)
- Stress Effects: this simulation simulates the impact of mechanical stress on solar cell performance, which is relevant for understanding reliability and durability under varying conditions.
- (c)
- Noise Modeling: This technique analyzes noise characteristics within solar cells, providing insights into device performance in noisy environments or under varying operational conditions.
3.3. Numerical Methods Used in the Simulation
- Numerical Methods for Differential Equations
- (a)
- Finite Element Method (FEM): this method models physical behavior like heat flow and charge transfer by discretizing the device structure into finite elements. It is widely used for complex simulations.
- (b)
- Finite Difference Method: this method discretizes continuous domains into a mesh of points to approximate spatial derivatives. It is useful for solving diffusion and recombination equations.
- (c)
- Finite Volume Method (FVM): this method analyzes heat transfer and fluid dynamics by integrating over discrete volumes. It handles complex geometries and optimizes performance.
- (d)
- Euler Method: this method is used in solar cell software for temporal discretization, energy generation calculations, and parameter identification. Its accuracy and stability depend on the specific application and time step choice.
- (e)
- Drift–Diffusion Modeling: this method simulates solar cells using the steady-state Drift–Diffusion model, which is a fundamental model for semiconductor device
- Matrix and Iterative Methods
- (a)
- Transfer Matrix Method (TMN): this method calculates optical properties and light interaction with solar cell materials, enhancing design efficiency.
- (b)
- S-Matrix Method: this method models the optical properties of solar cells, including absorption profiles and electric field distributions, which are crucial for understanding charge carrier generation and transport.
- (c)
- Gummel’s Method: a decoupled approach to solving Drift–Diffusion and Poisson’s equations iteratively, improving stability and convergence.
- (d)
- Newton–Raphson Method: solves nonlinear algebraic equations resulting from discretization, refining solutions iteratively.
- Statistical and Quantum Mechanics Methods
- (a)
- Fermi–Dirac Statistics: Fermi–Dirac statistics are vital for modeling solar cells, particularly with high doping. Tools like PC1D use these statistics to improve simulation accuracy and optimize silicon solar cell performance.
- (b)
- Monte Carlo Method: allows us to analyze the behavior of light and charge transport within these devices. SCAPS is a tool that uses this method to model complex processes.
- Advanced Structures and Materials Mode
- (a)
- Multi-Quantum Well Structures (MQW): Combining optical and electrical modeling techniques enhances light absorption and efficiency.
4. Brief Description of Computational Tools
4.1. SCAPS
4.2. AMPS
4.3. ASA
4.4. AFORS-HET
4.5. SC-SIMUL
4.6. ASPIN3
4.7. GVPDM
4.8. SESAME
4.9. SILVACO
4.10. PC1D
4.11. Sentaurus TCAD
4.12. ADEPT
4.13. QUOKKA
5. Comparison of Computational Tools for Thin-Film Solar Cells
5.1. Photovoltaic Cells and Materials
5.2. Modeling Used in the Simulation
5.3. Analysis of Numerical Methods Used in the Simulation
5.4. Cost
5.5. Others Comparisons
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fell, A.; McIntosh, K.R.; Altermatt, P.P.; Janssen, G.J.M.; Stangl, R.; Ho-Baillie, A. Input parameters for the simulation of silicon solar cells in 2014. IEEE J. Photovolt. 2015, 5, 1250–1263. [Google Scholar] [CrossRef]
- Green, M.A.; Bremner, S.P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 2017, 16, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.D.; Ebong, A.U. A review of thin-film solar cells technologies and challenges. J. Renew. Sustain. Energy 2017, 70, 1286–1297. [Google Scholar] [CrossRef]
- Milosavljević, D.D.; Kevkić, T.S.; Jovanović, S.J. Review and validation of photovoltaic solar simulation tools/software based on case study. J. Open Phys. 2022, 20, 431–451. [Google Scholar] [CrossRef]
- Burgelman, M. Modeling thin-film PV devices. Prog. Photovolt. Res. Appl. 2004, 12, 143–153. [Google Scholar] [CrossRef]
- Abou-Ras, D.; Kirchartz, T.; Rau, U. Advanced Characterization Techniques for Thin Film Solar Cells; Wiley-VCH: Weinheim, Germany, 2011; Volume 2. [Google Scholar] [CrossRef]
- Zhang, J.; Jung, Y.-G. Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications; Springer: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Haddout, A.; Raidou, A.; Fahoume, M. A review on the numerical modeling of CdS/CZTS-based solar cells. Appl. Phys. A 2019, 125, 12. [Google Scholar] [CrossRef]
- Kowsar, A.; Billah, M.; Dey, S.; Debnath, S.C.; Yeakin, S.; Uddin Farhad, S.F. Comparative study on solar cell simulators. In Proceedings of the 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET), Dhaka, Bangladesh, 23–24 December 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Green, M.A. Third Generation Photovoltaics: Advanced Solar Energy Conversion, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–24. Available online: https://link.springer.com/book/10.1007/b137807 (accessed on 4 October 2024).
- Jonathan, L.; Diguna, L.J.; Samy, O.; Muqoyyanah, M.A. Hybrid Organic–Inorganic Perovskite Halide Materials for Photovoltaics towards their Commercialization. Polymers 2022, 14, 1059. [Google Scholar] [CrossRef]
- Schmid, M. Revisiting the definition of solar cell generations. Adv. Opt. Mater. 2023, 11, 2300697. [Google Scholar] [CrossRef]
- Saif, O.M.; Elogail, Y.; Abdolkader, T.M.; Shaker, A.; Zekry, A.; Abouelatta, M.; Salem, M.S.; Fedawy, M. Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges. Energies 2023, 16, 4402. [Google Scholar] [CrossRef]
- Xu, Y.; Gong, T.; Munday, J.N. The generalized Shockley-Queisser limit for nanostructured solar cells. Sci. Rep. 2015, 5, 13536. [Google Scholar] [CrossRef]
- Kluczyk, K.; David, C.; Jacak, J.; Jacak, W. On Modeling of Plasmon-Induced Enhancement of the Efficiency of Solar Cells Modified by Metallic Nano-Particles. Nanomaterials 2019, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Azri, F.; Meftah, A.; Sengouga, N.; Meftah, A. Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. J. Sol. Energy 2019, 181, 372–378. [Google Scholar] [CrossRef]
- Taft, C.A.; Canchaya, J.G.S. Overview: Photovoltaic Solar Cells, Science, Materials, Artificial Intelligence, Nanotechnology and State of the Art. In Trends and Innovations in Energetic Sources, Functional Compounds and Biotechnology; Taft, C.A., de Almeida, P.F., Eds.; Engineering Materials; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Saga, T. Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater. 2010, 2, 96–102. [Google Scholar] [CrossRef]
- Staebler, D.L.; Crandall, R.S.; Willliams, R. Stability of n-i-p amorphous Silicon Solar Cells. Appl. Phys. Lett. 1981, 39, 733–735. [Google Scholar] [CrossRef]
- Khatoon, S.; Yadav, S.K.; Chakravorty, V.; Singh, J.; Singh, R.B.; Hasnain, M.H.; Hasnain, S.M. Perovskite solar cell’s efficiency, stability and scalability: A review. Mater. Sci. Energy Technol. 2023, 6, 437–459. [Google Scholar] [CrossRef]
- Mahmood, S.S.; Atiya, A.J.; Abdulrazzak, F.H.; Alkaim, A.F.; Hussein, F.H. A review on applications of carbon nanotubes (CNTs) in solar cells. J. Medic. Chem. Sci. 2021, 4, 225–229. [Google Scholar] [CrossRef]
- Garnett, E.C.; Brongersma, M.L.; Cui, Y.; McGehee, M.D. Nanowire solar cells. Annu. Rev. Mater. Res. 2011, 41, 269–295. [Google Scholar] [CrossRef]
- Beaucarne, G.; Duerinckx, F.; Kuzma, I.; Van Nieuwenhuysen, K.; Kim, H.J.; Poortmans, J. Epitaxial thin-film Si solar cells. Thin Solid Films 2006, 511, 533–542. [Google Scholar] [CrossRef]
- Liu, X.; Feng, Y.; Cui, H.; Liu, F.; Hao, X.; Conibeer, G.; Mitzi, D.B.; Green, M. The current status and future prospects of kesterite solar cells: A brief review. Prog. Photovolt. Res. Appl. 2016, 24, 879–898. [Google Scholar] [CrossRef]
- Korir, B.K.; Kibet, J.K.; Ngari, S.M. A review on the current status of dye-sensitized solar cells: Toward sustainable energy. Energy Sci. Eng. 2024, 12, 3188–3226. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Yang, Z.; Xu, C.; Li, X.; Huang, S.; Liu, Z. Flexible solar cells based on foldable silicon wafers with blunted edges. Nature 2023, 617, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Song, S.; Hörantner, M.T.; Snaith, H.J.; Park, T. Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells. ACS Nano 2016, 10, 6029–6036. [Google Scholar] [CrossRef] [PubMed]
- Schulte, K.L.; Johnston, S.W.; Braun, A.K.; Boyer, J.T.; Neumann, A.N.; McMahon, W.E.; Young, M.; Coll, P.; Bertoni, M.; Warren, E.; et al. GaAs solar cells grown on acoustically spalled GaAs substrates with 27% efficiency. Joule 2023, 7, 1529–1542. [Google Scholar] [CrossRef]
- Ameri, T.; Li, N.; Brabec, C.J. Highly efficient organic tandem solar cells: A follow up review. Energy Environ. Sci. 2013, 6, 2390–2413. [Google Scholar] [CrossRef]
- Liu, W.; Ma, H.; Walsh, A. Advance in photonic crystal solar cells. Renew. Sustain. Energy Rev. 2019, 116, 109436. [Google Scholar] [CrossRef]
- Lei, H.; Chen, J.; Tan, Z.; Fang, G. Review of Recent Progress in Antimony Chalcogenide-Based Solar Cells: Materials and Devices. Sol. RRL 2019, 3, 1900026. [Google Scholar] [CrossRef]
- Hsu, C.H.; Wu, J.R.; Lu, Y.T.; Flood, D.J.; Barron, A.R.; Chen, L.C. Fabrication and characteristics of black silicon for solar cell applications: An overview. Mater. Sci. Semicond. Process. 2014, 25, 2–17. [Google Scholar] [CrossRef]
- Jang, Y.I.; Kim, K.H.; Choi, P.P.; Park, J.K. Current Status and Future of CIGS Solar Cells Technology. J. Powder Mater. 2008, 15, 173–181. [Google Scholar] [CrossRef]
- Mahmoudi, T.; Wang, Y.; Hahn, Y.B. Graphene and its derivatives for solar cells application. Nano Energy 2018, 47, 51–65. [Google Scholar] [CrossRef]
- Kahmann, S.; Loi, M.A. Hot carrier solar cells and the potential of perovskites for breaking the Shockley–Queisser limit. J. Mater. Chem. C 2019, 7, 2471–2486. [Google Scholar] [CrossRef]
- Castelletto, S.; Boretti, A. Luminescence solar concentrators: A technology update. Nano Energy 2023, 109, 108269. [Google Scholar] [CrossRef]
- Hossain, M.K.; Toki, G.F.I.; Kuddus, A.; Rubel, M.H.K.; Hossain, M.M.; Bencherif, H.; Mushtaq, M. An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells. Sci. Rep. 2023, 13, 2521. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Song, L.; Chen, Y. Modeling Thin Film Solar Cells: From Organic to Perovskite. Adv. Sci. 2020, 7, 1901397. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J. The Physics of Solar Cells, 1st ed.; Imperial College Press: London, UK, 2003; 384p. [Google Scholar] [CrossRef]
- Green, M.A. Solar Cells: Operating Principles, Technology, and System Applications, 1st ed.; E Prentice Hall: Upper Saddle River, NJ, USA, 1982; 388p. Available online: https://www.osti.gov/biblio/6051511 (accessed on 4 October 2024).
- Mack, C.A. Fundamental Principles of Optical Lithography: The Science of Microfabrication, 1st ed.; Wiley, SA: Hoboken, NJ, USA, 2007; 534p. [Google Scholar] [CrossRef]
- Fonash, S.J. Solar Cell Device Physics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Würfel, P. Physics of Solar Cells: From Basic Principles to Advanced Concepts, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2016; 244p, Available online: https://www.wiley.com/en-us/Physics+of+Solar+Cells%3A+From+Basic+Principles+to+Advanced+Concepts%2C+2nd+Edition-p-9783527408573 (accessed on 4 October 2024).
- Schroder, D.K. Semiconductor Material and Device Characterization, 3rd ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.B.; Duan, H.S.; Yang, Y. Interface engineering for highly efficient perovskite solar cells. Sci. Bull. 2014, 345, 542–546. [Google Scholar] [CrossRef]
- Ruiz, C.M.; Duché, D.; Le Rouzo, J. Experimental and Simulation Tools for Thin-Film Solar Cells, 1st ed.; SPIE Press: Bellingham, WA, USA, 2016; pp. 58–59. Available online: https://spie.org/Publications/Book/2244890#_=_ (accessed on 4 October 2024).
- Ainsworth, M.; Oden, J.T. A Posteriori Error Estimation in Finite Element Analysis; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Babuska, I.; Oden, J.T. Verification and validation in computational engineering and science: Basic concepts. Comput. Methods Appl. Mech. Eng. 2004, 193, 4057–4066. [Google Scholar] [CrossRef]
- Ferziger, J.H.; Peric, M. Computational Methods for Fluid Dynamics, 3rd ed.; Springer: Berlin, Germany, 2002; Available online: https://link.springer.com/book/10.1007/978-3-319-99693-6 (accessed on 4 October 2024).
- Smith, B.F.; Bjørstad, P.E.; Gropp, W.D. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations; Cambridge University Press: Cambridge, UK, 1996; Available online: https://experts.illinois.edu/en/publications/domain-decomposition-parallel-multilevel-methods-for-elliptic-par (accessed on 4 October 2024).
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method, 7th ed.; Butterworth-Heinemann: Oxford, UK, 2013; Available online: https://www.google.com.mx/books/edition/The_Finite_Element_Method_Its_Basis_and/7UL5Ls9hOF8C?hl=es&gbpv=1&dq=The+Finite+Element+Method+%2B+Zienkiewicz+%2Boxford&printsec=frontcover (accessed on 4 October 2024).
- SESAME: A Soft Elasticity and Stimuli-Responsive Adaptation Modeling Environment, National Institute of Standards and Technology. Available online: https://pages.nist.gov/sesame (accessed on 16 June 2024).
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed.; Pearson Education: London, UK, 2007; 489p, Available online: https://orbit.dtu.dk/en/publications/an-introduction-to-computational-fluid-dynamics-the-finite-volume (accessed on 4 October 2024).
- Burden, R.L.; Faires, J.D. Numerical Analysis, 1st ed.; Brooks/Cole: Pacific Grove, CA, USA, 2010; pp. 1–550. [Google Scholar]
- Yeh, P. Optical Waves in Layered Media, 1st ed.; Wiley: Hoboken, NJ, USA, 1988; pp. 1–464. Available online: https://www.wiley.com/en-us/Optical+Waves+in+Layered+Media-p-9780471731924 (accessed on 4 October 2024).
- Li, E.H. Semiconductor Quantum Wells: Physics and Device Applications, 1st ed.; Taylor & Francis: Abingdon, UK, 2000; pp. 1–288. [Google Scholar]
- Gummel, H.K. A Self-Consistent Iterative Scheme for One-Dimensional Steady-State Transistor Calculations. IEEE Trans. Electron Devices 1964, 11, 455–465. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006; Available online: https://www.wiley.com/en-nl/Physics+of+Semiconductor+Devices%2C+3rd+Edition-p-9780470068328 (accessed on 4 October 2024).
- Bastard, G. Wave Mechanics Applied to Semiconductor Heterostructures, 3rd ed.; Wiley: Hoboken, NJ, USA, 1991; pp. 1–365. [Google Scholar]
- Chelvanathan, P.; Hossain, M.I.; Amin, N. Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. Curr. Appl. Phys. 2010, 10, S387–S391. [Google Scholar] [CrossRef]
- SCAPS Manual. Available online: https://scaps.elis.ugent.be/SCAPS%20manual%20most%20recent.pdf (accessed on 4 May 2024).
- Qaid, S.M.; Shaker, A.; Okil, M.; Gontrand, C.; Alkadi, M.; Ghaithan, H.M.; Salah, M.M. Optoelectronic Device Modeling and Simulation of Selenium-Based Solar Cells under LED Illumination. Crystals 2023, 13, 1668. [Google Scholar] [CrossRef]
- Mouhoub, A.; Bouloufa, A.; Djessas, K.; Messous, A. Device modeling approach and simulation of the effect of the ODC thin layer on bifacial solar cells based on CuIn1−xGaxSe2 thin films absorbers. J. Phys. Chem. Sol. 2020, 144, 109520. [Google Scholar] [CrossRef]
- Ray, J.R.; Panchal, C.J.; Desai, M.S.; Trivedi, U.B. Simulation of CIGS Thin Film Solar Cells Using Amps-1D. 2011. Available online: http://essuir.sumdu.edu.ua/handle/123456789/22096 (accessed on 4 October 2024).
- A Manual for AMPS-1D. Available online: http://www.ampsmodeling.org/pdfs/AMPS-1D%20Manual.pdf (accessed on 4 May 2024).
- Liu, Y.; Heinzel, D.; Rockett, A. A revised version of the AMPS simulation code. In Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, USA, 20–25 June 2010. [Google Scholar] [CrossRef]
- AMPS-1D Lecture 3—Handouts. Available online: https://www.utoledo.edu/med/depts/radther/pdf/AMPS-1D%20Lecture%203%20-%20handouts.pdf (accessed on 20 April 2024).
- Liu, Y.; Heinzel, D.; Rockett, A. A new solar cell simulator: WxAMPS. In Proceedings of the IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011; pp. 2753–2756. [Google Scholar] [CrossRef]
- Shakoor, A.; Nowsherwan, G.A.; Aamir, M.F.; Ali, A.; Rehman, S.U.; Alam, W.; Yousaf, J. Performance evaluation of solar cells by different simulating softwares. In Solar PV Panels-Recent Advances and Future Prospects; IntechOpen: Rijeka, Croatia, 2023; pp. 85–104. [Google Scholar] [CrossRef]
- Stangl, R.; Leendertz, C.; Haschke, J. Numerical Simulation of Solar Cells and Solar Cell Characterization Methods: The Open-Source on Demand Program AFORS-HET. Sol. Energy 2010, 14, 319–352. Available online: https://www.intechopen.com/chapters/8561 (accessed on 4 October 2024).
- Yamashita, Y.; Tobon, C.; Santbergen, R. Solar cells based on n+-AZO/p-BaSi2 heterojunction: Advanced opto-electrical modelling and experimental demonstration. Sol. Energy Mater. Sol. Cells 2021, 230, 111181. [Google Scholar] [CrossRef]
- Kirchartz, T.; Nelson, J. Device modelling of organic bulk heterojunction solar cells. Top. Curr. Chem. 2014, 352, 279–324. [Google Scholar] [CrossRef] [PubMed]
- Alkharasani, W.M.; Amin, N.; Shahahmadi, S.A.; Alkahtani, A.A.; Mohamad, I.S.; Chelvanathan, P.; Sieh Kiong, T. A Comparative Study on p- and n-Type Silicon Heterojunction Solar Cells by AFORS-HET. Materials 2022, 15, 3508. [Google Scholar] [CrossRef] [PubMed]
- Froitzheim, A.; Stangl, R.; Elstner, L.; Kriegel, M.; Fuhs, W. AFORS-HET: A computer-program for the simulation of heterojunction solar cells to be distributed for public use. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003; Volume 1, pp. 279–282. Available online: https://ieeexplore.ieee.org/document/1305276 (accessed on 4 October 2024).
- Waleed, H.; Munef, R.A.; Saleh, A.N. Simulation and improvement of FeSi2/Si solar cell by AFORS-HET software. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2022; Volume 2398, No. 1. [Google Scholar] [CrossRef]
- Reynolds, S.; Gordijn, A.; Smirnov, V. Equivalent-circuit and transport-based mobility models of microcrystalline silicon solar cells. Energy Procedia 2014, 44, 192–202. [Google Scholar] [CrossRef]
- Pieters, B.E.; Decock, K.; Burgelman, M.; Stangl, R.; Kirchartz, T. One-Dimensional Electro-Optical Simulations of Thin-Film Solar Cells. Adv. Charact. Tech. Thin Film. Sol. Cells 2016, 2, 633–657. [Google Scholar] [CrossRef]
- Reynolds, S. Properties of thin-film silicon solar cells at very high irradiance. J. Non-Cryst. Solids 2012, 358, 2202–2205. [Google Scholar] [CrossRef]
- ASPIN3. Available online: http://lpvo.fe.uni-lj.si/en/software/aspin3 (accessed on 8 April 2022).
- Senica, U.; Filipič, M. Simulation of crystalline silicon solar cell top contact using ASPIN3 and COMSOL Multiphysics simulators. University of Ljubljana, Ljubljana, Slovenia. 2015. Available online: https://urbansenica.com/wp-content/files/Senica_MIDEM2015.pdf (accessed on 4 October 2024).
- Preissler, N.; Töfflinger, J.A.; Gabriel, O.; Sonntag, P.; Amkreutz, D.; Stannowski, B.; Schlatmann, R. Passivation at the interface between liquid-phase crystallized silicon and silicon oxynitride in thin film solar cells. Prog. Photovolt. Res. Appl. 2017, 25, 515–524. [Google Scholar] [CrossRef]
- Sonntag, P.; Bokalič, M.; Preissler, N.; Amkreutz, D.; Rech, B.; Topič, M. Liquid phase crystallized silicon–A holistic absorber quality assessment. Sol. Energy Mater. Sol. Cells 2018, 181, 2–8. [Google Scholar] [CrossRef]
- GPVDM: General Purpose Photovoltaic Device Model. Available online: https://photovoltaic-software.com/solar-tools/scientific-solar/gpvdm-general-purpose-photovoltaic-device-model (accessed on 8 August 2024).
- Mishra, A.K.; Shukla, R.K. Electrical and optical simulation of typical perovskite solar cell by GPVDM software. Mater. Today Proc. 2012, 49, 3181–3186. [Google Scholar] [CrossRef]
- Puspita, D.; Syarifah, R.D.; Rizal, N.S. GPVDM simulation of thickness effect on power conversion efficiency of PEDOT: PSS/P3HT: PCBM solar cell performance. In AIP Conference Proceedings; AIP Publishing: New York, NY, USA, 2022; Volume 2663. [Google Scholar] [CrossRef]
- Puspita, D.; Syarifah, R.D.; Rizal, N.S. Optimization of Layers Thickness Design of Perovskite Solar Cell (PSC) Using GPVDM Simulation. Comput. Exp. Res. Mater. Renew. Energy 2019, 2, 56–63. [Google Scholar]
- Yasodharan, R.; Senthilkumar, A.P.; Ajayan, J.; Mohankumar, P. Effects of layer thickness on Power Conversion Efficiency in Perovskite solar cell: A numerical simulation approach. In Proceedings of the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; Available online: https://ieeexplore.ieee.org/document/8728410 (accessed on 4 October 2024).
- Gaury, B.; Sun, Y.; Bermel, P.; Haney, P. Sesame: A 2-dimensional solar cell modeling tool. Sol. Energy Mater. Sol. Cells 2019, 198, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Gaury, B. Sesame: A Numerical Simulation Tool for Polycrystalline Photovoltaics. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018. [Google Scholar] [CrossRef]
- Dinca, S.A.; Schiff, E.A. Photovoltages in Polycrystalline Mosaic Solar Cells. ACS Appl. Energy Mater. 2021, 4, 6711–6718. [Google Scholar] [CrossRef] [PubMed]
- Silvaco TCAD. Available online: https://silvaco.com/tcad (accessed on 11 August 2024).
- Helal, H.; Benamara, Z.; Arbia, M.B.; Khettou, A.; Rabehi, A.; Kacha, A.H.; Amrani, M. A study of current-voltage and capacitance-voltage characteristics of Au/n-GaAs and Au/GaN/n-GaAs Schottky diodes in wide temperature range. Int. J. Numer. Model. Electron. Netw. Devices Fields 2020, 33, e2714. [Google Scholar] [CrossRef]
- Kaushik, J.K.; Balakrishnan, V.R.; Panwar, B.S.; Muralidharan, R. On the origin of kink effect in current–voltage characteristics of AlGaN/GaN high electron mobility transistors. IEEE Trans. Electron Devices 2013, 60, 3351–3357. [Google Scholar] [CrossRef]
- Zeghdar, K.; Dehimi, L.; Saadoune, A.; Sengouga, N. Inhomogeneous barrier height effect on the current–voltage characteristics of an Au/n-InP Schottky diode. J. Semicond. 2015, 36, 124002. [Google Scholar] [CrossRef]
- Fotis, K. Modeling and Simulation of a Dual-Junction CIGS Solar Cell Using Silvaco ATLAS. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, 2012. Available online: https://apps.dtic.mil/sti/citations/ADA574282 (accessed on 4 October 2024).
- Karbalaei, M.; Dideban, D. Influence of source stack and heterogeneous gate dielectric on band to band tunneling rate of tunnel FET. Silicon 2020, 12, 1811–1817. [Google Scholar] [CrossRef]
- PC1D User Manual. Available online: https://www2.pvlighthouse.com.au/resources/PC1D/PC1Dmod6/PC1Dmod%206-1%20help.pdf (accessed on 2 June 2023).
- Kumar, S.G.; Shetty, A.P.; Prashanth, C.R. Solar cell material based on the optimum values of key parameters using PC1D. In Proceedings of the 2021 2nd International Conference for Emerging Technology (INCET), Belagavi, India, 21–23 May 2021. [Google Scholar] [CrossRef]
- Haug, H. PC1Dmod 6.1–state-of-the-art models in a well-known interface for improved simulation of Si solar cells. Sol. Energy Mater. Sol. Cells 2015, 142, 47–53. [Google Scholar] [CrossRef]
- Haug, H.; Kimmerle, A.; Greulich, J.; Wolf, A.; Marstein, E.S. Implementation of Fermi–Dirac statistics and advanced models in PC1D for precise simulations of silicon solar cells. Sol. Energy Mater. Sol. Cells 2014, 131, 30–36. [Google Scholar] [CrossRef]
- PVEducation. Available online: https://www.pveducation.org/pvcdrom/welcome-to-pvcdrom/pc1d (accessed on 21 July 2024).
- Sentaurus Datasheet, Synopsys. Available online: https://www.synopsys.com/content/dam/synopsys/silicon/datasheets/sentaurus_ds.pdf (accessed on 3 April 2024).
- Sentaurus Training Material. Available online: https://kolegite.com/EE_library/books_and_lectures/Автоматизация%20на%20Проектирането%20в%20Електрониката/Sentaurus_Training/sd/sd_11.html (accessed on 9 May 2024).
- Guo, S.; Ma, F.-J.; Hoex, B.; Aberle, A.G.; Peters, M. Analysing Solar Cells by Circuit Modelling. Energy Procedia 2012, 25, 28–33. [Google Scholar] [CrossRef]
- Otero, P.; Rodriguez, J.A.; Vetter, M.; Andreu, J.; Comesaña, E.; Loureiro, A.G. Simulation of the temperature dependence of a-Si solar cell current-voltage characteristics. In Proceedings of the 2011 Symposium on Circuit and Device Simulation (SCED), Palma de Mallorca, Spain, 8–11 February 2011; pp. 1–4. [Google Scholar] [CrossRef]
- ADEPT v2.0 Reference Guide. Available online: https://nanohub.org/resources/10918/download/ADEPT_v2.0_Reference_Guide.pdf (accessed on 17 April 2024).
- Gray, J.L. ADEPT: A general purpose numerical device simulator for modeling solar cells in one-, two-, and three-dimensions. In Proceedings of the Twenty-Second IEEE Photovoltaic Specialists Conference—1991, Las Vegas, NV, USA, 7–11 October 1991; Volume 1, pp. 436–438. [Google Scholar] [CrossRef]
- Fell, A.; Fong, K.C.; McIntosh, K.R.; Franklin, E.; Blakers, A.W. 3-D simulation of interdigitated-back-contact silicon solar cells with Quokka including perimeter losses. IEEE J. Photovolt. 2014, 4, 1040–1045. [Google Scholar] [CrossRef]
- Quokka3 User Guide. Available online: https://www.quokka3.com/support/user-guide.html (accessed on 17 May 2024).
- Altermatt, P. Numerical Simulation of Crystalline Silicon Solar Cells. In Photovoltaic Solar Energy: From Fundamentals to Applications; Wiley: Hoboken, NJ, USA, 2016; pp. 150–159. [Google Scholar] [CrossRef]
- Fell, A. A Free and Fast Three-Dimensional/Two-Dimensional Solar Cell Simulator Featuring Conductive Boundary and Quasi-Neutrality Approximations. IEEE Trans. Electron Devices 2013, 60, 733–738. [Google Scholar] [CrossRef]
- A Mature Quokka for Everyone—Advancing the Capabilities and Accessibility of Numerical Solar Cell Simulations. Available online: https://www.pvlighthouse.com.au/cms/simulation-programs/quokka2 (accessed on 9 August 2024).
- Manceau, M.; Rivaton, A.; Gardette, J.L.; Guillerez, S.; Lemaître, N. The mechanism of photo-and thermooxidation of poly(3-hexylthiophene) (P3HT) reconsidered. Polym. Degrad. Stab. 2019, 96, 898–907. [Google Scholar] [CrossRef]
- Jørgensen, M.; Norrman, K.; Krebs, F.C. Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 2008, 92, 686–714. [Google Scholar] [CrossRef]
- Pettersson, L.A.; Ghosh, S.; Inganäs, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 1999, 86, 487–496. [Google Scholar] [CrossRef]
- Stangl, R.; Kriegel, M.; Schmidt, M. AFORS-HET, Version 2.2, a numerical computer program for simulation of heterojunction solar cells and measurements. In Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 7–12 May 2006; Volume 2, pp. 1350–1353. [Google Scholar] [CrossRef]
- Jahangir, K.; Nowsherwan, G.A.; Hussain, S.S.; Riaz, S.; Naseem, S. Electrical simulation and optimization of ptb7: pc70bm based organic solar cell using gpvdm simulation software. ICRRD Qual. Index Res. J. 2021, 2, 131–140. [Google Scholar] [CrossRef]
- Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 4021. Available online: https://www.nature.com/articles/ncomms6784 (accessed on 4 October 2024). [CrossRef]
- Nowsherwan, G.A.; Jahangir, K.; Usman, Y.; Saleem, W.; Khalid, M. Numerical Modeling and Optimization of Perovskite Silicon Tandem Solar Cell Using SCAPS-1D. Sch. Bull. 2021, 7, 171–184. [Google Scholar]
- Mathur, A.S.; Singh, B.P. Computational Approach for Synthesis of Perovskite Solar Cells. Perovskite Mater. Energy Environ. Appl. 2022, 1–36. [Google Scholar] [CrossRef]
- Essig, S.; Allebé, C.; Remo, T.; Geisz, J.F.; Steiner, M.A.; Horowitz, K. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two-terminal devices and 35.9% for four-terminal devices. Nat. Energy 2017, 2, 17144. [Google Scholar] [CrossRef]
- Bivour, M.; Reichel, C.; Hermle, M.; Glunz, S.W. Improving the a-Si: H (p) rear emitter contact of n-type silicon solar cells. Sol. Energy Mater. Sol. Cells 2012, 106, 11–16. [Google Scholar] [CrossRef]
- Brüggemann, R.; Rösch, M.; Tardon, S.; Bauer, G.H. Application of SC-SIMUL for numerical modeling of the opto-electronic properties of heterojunction diodes. MRS Online Proc. Libr. (OPL) 2005, 862, A 9-3. [Google Scholar] [CrossRef]
- Ashok, A.; Valencia, D.; Conde, J.; Velumani, S. Simulation of theoretical and experimental parameters of materials used in CIGSe thin film solar cells by SCAPS software. In Proceedings of the 2022 19th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 9–11 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Sentaurus Device User Guide, Synopsys, Inc. Available online: https://www.synopsys.com/silicon/tcad/device-simulation/sentaurus-device.html (accessed on 12 June 2024).
- Abdelkadir, A.A.; Sahal, M. Theoretical development of the CZTS thin-film solar cell by SCAPS-1D software based on experimental work. Mater. Sci. Eng. B 2023, 296, 116710. [Google Scholar] [CrossRef]
- Mandadapu, U.; Vedanayakam, S.V.; Thyagarajan, K.; Babu, B.J. Optimisation of high efficiency tin halide perovskite solar cells using SCAPS-1D. Int. J. Simul. Process Model. 2018, 13, 221–227. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, L.; Li, P.; Fan, B.; Qiu, Y.; Yan, F. Simulation of optimum band structure of HTM-free perovskite solar cells based on ZnO electron transporting. Mater. Sci. Semicond. Process. 2019, 90, 1–6. [Google Scholar] [CrossRef]
- Lam, N.D. Modelling and numerical analysis of ZnO/CuO/Cu2O heterojunction solar cells using SCAPS. Eng. Res. Express 2020, 2, 025033. [Google Scholar] [CrossRef]
- Mousa, M.; Amer, F.Z.; Saeed, A.; Mubarak, R.I. Simulation of high-efficiency perovskite-based tandem solar cells. In Proceedings of the 2020 6th International Symposium on New and Renewable Energy (SIENR), Ghadaia, Algeria, 13–14 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Mouhoub, A.; Bouloufa, A.; Djessas, K.; Messous, A. Analytical modeling and optimization of original bifacial solar cells based on Cu(In,Ga)Se2 thin films absorbers. Superlattices Microstruct. 2018, 122, 434–443. [Google Scholar] [CrossRef]
- Ragb, O.; Mohamed, M.; Matbuly, M.S.; Civalek, O. An accurate numerical approach for studying perovskite solar cells. Int. J. Energy Res. 2021, 45, 16456–16477. [Google Scholar] [CrossRef]
- Isabella, O.; Sai, H.; Kondo, M.; Zeman, M. Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells. Prog. Photovolt. Res. Appl. 2014, 22, 671–689. [Google Scholar] [CrossRef]
- Krishnaswamy, J.A.; Ramamurthy, P.C.; Hegde, G.; Mahapatra, D.R. Modelling and Design of Nanostructured Optoelectronic Devices: Solar Cells and Photodetectors; Energy Systems in Electrical Engineering Series; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Demésy, G.; Zolla, F.; Nicolet, A.; Commandré, M.; Fossati, C.; Ricq, S.; Gagliano, O.; Dunne, B. The Finite Element Method as applied to the calculation of the Quantum Efficiency in optoelectronic imaging devices. In Proceedings of the SPIE 7030, Optical Modeling and Performance Predictions V, San Diego, CA, USA, 22–23 August 2022. [Google Scholar] [CrossRef]
- Piprek, J. Optoelectronic Devices and Materials. In Springer Handbook of Electronic and Photonic Materials; Springer: Cham, Switzerland, 2017; p. 1. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, Z.; Law, M.K.; Heidari, H.; Abdellatif, S.O.; Imran, M.A.; Ghannam, R. Simulation of crystalline silicon photovoltaic cells for wearable applications. IEEE Access 2021, 9, 20868–20877. [Google Scholar] [CrossRef]
- Boubaaya, M.; Hadj Larbi, F.H.H.; Oussalah, S. Simulation of ion implantation for CMOS 1 µm using SILVACO tools. In Proceedings of the 2012 24th International Conference on Microelectronics (ICM), Algiers, Algeria, 16–20 December 2012. [Google Scholar] [CrossRef]
- Baik, J.; Jun, H.; Nahdi, H.; Geffroy, B.; Tondelier, D.; Bonnassieux, Y. Modeling the perovskite solar cell and the ion migration with physical approach based on FEM from Silvaco. In Journées Nationales du Photovoltaïque; HAL Open Science: Dourdan, France, 2021; Available online: https://cea.hal.science/cea-03123520v1 (accessed on 4 October 2024).
- Wang, K.; Perez-Wurfl, I. A method to overcome the time step limitation of PC1D in transient excitation mode. Energy Procedia 2014, 55, 155–160. [Google Scholar] [CrossRef]
- Clugston, D.A.; Basore, P.A. PC1D version 5: 32-bit solar cell modeling on personal computers. In Proceedings of the Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997, Anaheim, CA, USA, 29 September–3 October 1997. [Google Scholar] [CrossRef]
- Katsaounis, T.; Kotsovos, K.; Gereige, I.; Al-Saggaf, A.; Tzavaras, A. 2D simulation and performance evaluation of bifacial rear local contact c-Si solar cells under variable illumination conditions. Sol. Energy 2017, 158, 34–41. [Google Scholar] [CrossRef]
- Baribeau, L. Design of Multi-Junction Solar Cells Incorporating Silicon-Germanium-Tin Alloys with Finite-Element Analysis and Drift-Diffusion Model. Ph.D. Dissertation, Université d’Ottawa, Canada, 2022. Available online: https://ruor.uottawa.ca/items/3a421266-1c3a-4961-962b-89101927ea41 (accessed on 4 October 2024).
- Heinzel, D.P.; Wu, H.M.; Rockett, A. Stochastic analysis of advanced photovoltaic devices. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 2656–2661. [Google Scholar] [CrossRef]
- Almora, O.; Guerrero, A.; Garcia-Belmonte, G. Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites. Appl. Phys. Lett. 2016, 108, 043903. [Google Scholar] [CrossRef]
- Nowsherwan, G.A.; Iqbal, M.A.; Rehman, S.U.; Zaib, A.; Sadiq, M.I.; Dogar, M.A.; Azhar, M.; Maidin, S.S.; Hussain, S.S.; Morsy, K.; et al. Numerical optimization and performance evaluation of ZnPC:PC70BM based dye-sensitized solar cell. Sci. Rep. 2023, 13, 10431. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Kalkan, A.K.; Hou, J.; Fonash, S.J. Applications of AMPS-1D for solar cell simulation. AIP Conf. Proc. 1999, 462, 309–314. [Google Scholar] [CrossRef]
- Omer, B.M.; Khogali, A.; Pivrikas, A. AMPS-1D modeling of P3HT/PCBM bulk-heterojunction solar cell. In Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011; pp. 000734–000743. [Google Scholar] [CrossRef]
- Burgelman, M.; Decock, K.; Khelifi, S.; Abass, A. Advanced electrical simulation of thin film solar cells. Thin Solid Films 2013, 535, 296–301. [Google Scholar] [CrossRef]
- Jäger, K.; Fischer, M.; Van Swaaij, R.A.C.M.M.; Zeman, M.A. A scattering model for nano-textured interface and its application in opto-electrical simulations of thin film silicon solar cells. J. Appl. Phys. 2012, 111, 083108. [Google Scholar] [CrossRef]
- Lisheng, W.; Fengxiang, C.; Yu, A. Simulation of high Efficiency heterojunction solar cells with AFORS-HET. J. Phys. Conf. 2011, 276, 012177. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 2000, 361, 362–367. [Google Scholar] [CrossRef]
- Huang, R.; Yu, M.; Yang, Q.; Zhang, L.; Wu, Y.; Cheng, Q. Numerical simulation for optimization of an ultra-thin n-type WS2/p-type c-Si heterojunction solar cells. Comput. Mater. Sci. 2020, 178, 109600. [Google Scholar] [CrossRef]
- Zeman, M.; Isabella, O.; Jäger, K.; Babal, P.; Solntsev, S.; Santbergen, R. Modeling of Advanced Light Trapping Approaches in Thin-Film Silicon Solar Cells. MRS Proc. 2011, 1321, mrss11-1321. [Google Scholar] [CrossRef]
- Akinpelu, A.; Akinojo, O.A.; Usikalu, M.; Enemuwe, C.; Arijaje, T. A Numerical Simulation and Modeling of Poisson Equation for Solar Cell in 2 Dimensions. IOP Conf. Ser. Earth Environ. Sci. 2018, 173, 012001. [Google Scholar] [CrossRef]
- Islam, M.M. An Overview on SILVACO and MOSFET Simulation Technique Using ATHENA and ATLAS. 2017. Available online: https://www.researchgate.net/publication/312086259 (accessed on 28 April 2024).
- Wang, Q.; Liu, H.; Wang, S.; Chen, S. TCAD Simulation of Single-Event-Transient Effects in L-Shaped Channel Tunneling Field-Effect Transistors. IEEE Trans. Nucl. Sci. 2018, 65, 2250–2259. [Google Scholar] [CrossRef]
- Anand, N.; Kale, P. Optimization of TOPCon Structured Solar Cell Using AFORS-HET. Trans. Electr. Electron. Mater. 2020, 22, 160–166. [Google Scholar] [CrossRef]
- Elfarri, H.; Bouachri, M.; Frimane, A.; Fahoume, M.; Daoudi, O.; Battas, M. Optimization of simulations of thickness layers, temperature and defect density of CIS based solar cells, with SCAPS-1D software, for photovoltaic application. Chalcogenide Lett. 2021, 18, 2011. [Google Scholar] [CrossRef]
- Olyaeefar, B.; Ahmadi-Kandjani, S.; Asgari, A. Bulk and interface recombination in planar lead halide perovskite solar cells: A Drift-Diffusion study. Phys. E Low-Dimens. Syst. Nanostruct. 2017, 94, 118–122. [Google Scholar] [CrossRef]
- Kirchartz, T.; Pieters, B.E.; Kirkpatrick, J.; Rau, U.; Nelson, J. Recombination via tail states in polythiophene: Fullerene solar cells. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 83, 115209. [Google Scholar] [CrossRef]
- Abdulsalam, H.; Babaji, G.; Abba, H.T. The Effect of Temperature and Active layer thickness on the Performance of CH3NH3PbI3 Perovskite Solar Cell: A Numerical Simulation Approach. J. Found. Appl. Phys. 2018, 5, 141–151. Available online: http://sciencefront.org/ojs/index.php/jfap/article/view/89 (accessed on 4 October 2024).
- Michael, S.; Bates, A. The design and optimization of advanced multijunction solar cells using the Silvaco ATLAS software package. Sol. Energy Mater. Sol. Cells 2005, 87, 785–794. [Google Scholar] [CrossRef]
- Mehta, M. Modifying PC1D to Model Spontaneous & Piezoelectric Polarization in III-V Nitride Solar Cells. Master’s Thesis, University of Delaware, Newark, DE, USA, 2008. Available online: https://www.proquest.com/openview/b4b314719eac847640d8490831340af4/1?pq-origsite=gscholar&cbl=18750 (accessed on 4 October 2024).
- Lu, M.; Das, U.; Bowden, S.; Hegedus, S.; Birkmire, R. Optimization of interdigitated back contact silicon heterojunction solar cells by two-dimensional numerical simulation. In Proceedings of the IEEE Photovoltaic Specialists Conference (PVSC), Philadelphia, PA, USA, 7–12 June 2009; pp. 001475–001480. [Google Scholar] [CrossRef]
- Arbez, G.; Wheeldon, J.; Walker, A.; Hinzer, K.; Schriemer, H. Modeling and simulation of triple junction solar cells. In Photonics North 2010; SPIE: New York, NY, USA, USA, 2010; Volume 7750. [Google Scholar] [CrossRef]
- Ren, X.; Wang, Z.; Sha, W.E.; Choy, W.C. Exploring the way to approach the efficiency limit of perovskite solar cells by drift-diffusion model. ACS Photonics 2017, 4, 934–942. [Google Scholar] [CrossRef]
- Safa Sultana, R.; Bahar, A.N.; Asaduzzaman, M.; Ahmed, K. Numerical modeling of a CdS/CdTe photovoltaic cell based on ZnTe BSF layer with optimum thickness of absorber layer. Cogent Eng. 2017, 4, 1282396. [Google Scholar] [CrossRef]
- Fell, A.; Schultz-Wittmann, O.; Messmer, C.; Schubert, M.C.; Glunz, S.W. Combining drift-diffusion and equivalent-circuit models for efficient 3D tandem solar cell simulations. IEEE J. Photovolt. 2022, 12, 1469–1476. [Google Scholar] [CrossRef]
- Jamal, S.N.; Ranom, R. Method of line technique to solve the drift diffusion equation for perovskite solar cell. AIP Conf. Proc. 2024, 2895, 040006. [Google Scholar] [CrossRef]
- Rafieipour, P.; Mohandes, A.; Moaddeli, M.; Kanani, M. Integrating transfer matrix method into SCAPS-1D for addressing optical losses and per-layer optical properties in perovskite/Silicon tandem solar cells. arXiv 2023. [Google Scholar] [CrossRef]
- Coignus, J.; Baudrit, M.; Singer, J.; Lachaume, R.; Muñoz, D.; Thony, P. Key issues for accurate simulation of a-Si: H/c-Si heterojunction solar cells. Energy Procedia 2011, 8, 174–179. [Google Scholar] [CrossRef]
- Trinh, C.T.; Preissler, N.; Sonntag, P.; Muske, M.; Jäger, K.; Trahms, M.; Amkreutz, D. Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%. Sol. Energy Mater. Sol. Cells 2018, 174, 187–195. [Google Scholar] [CrossRef]
- Daniel, S.G.; Devu, B.; Sreekala, C.O. Active layer thickness optimization for maximum efficiency in bulk heterojunction solar cell. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1225, 012017. [Google Scholar] [CrossRef]
- Tasnim, S.; Kaysir, M.R.; Islam, M.J. Effect of plasmonic silver nanoparticles layer on the performance of organic photovoltaic cell. In Proceedings of the 2021 International Conference on Electronics, Communications and Information Technology (ICECIT), Sanya, China, 27–29 December 2021. [Google Scholar] [CrossRef]
- Fakhri, N.; Salay Naderi, M.; Gholami Farkoush, S.; SaeidNahaei, S.; Park, S.N.; Rhee, S.B. Simulation of perovskite solar cells optimized by the inverse planar method in SILVACO: 3D electrical and optical models. Energies 2021, 14, 5944. [Google Scholar] [CrossRef]
- Gulomov, J.; Aliev, R.; Abduvoxidov, M.; Mirzaalimov, A.; Mirzaalimov, N. Exploring optical properties of solar cells by programming and modeling. Glob. J. Eng. Technol. Adv. 2020, 5, 032–038. [Google Scholar] [CrossRef]
- Limpert, S.; Ghosh, K.; Wagner, H.; Bowden, S.; Honsberg, C.; Goodnick, S.; Green, M. Results from coupled optical and electrical sentaurus TCAD models of a gallium phosphide on silicon electron carrier selective contact solar cell. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 836–840. [Google Scholar] [CrossRef]
- Fell, A.; McIntosh, K.R.; Fong, K.C. Simplified device simulation of silicon solar cells using a lumped parameter optical model. IEEE J. Photovolt. 2016, 6, 611–616. [Google Scholar] [CrossRef]
- Dumitru, C.; Muscurel, V.; Nordseth, Ø.; Fara, L.; Sterian, P. Optimization of electro-optical performance and material parameters for a tandem metal oxide solar cell. In Proceedings of the Computational Science and Its Applications–ICCSA 2018: 18th International Conference, Melbourne, VIC, Australia, 2–5 July 2018; Proceedings, Part II. Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Nowsherwan, G.A.; Zaib, A.; Shah, A.A.; Khan, M.; Shakoor, A.; Bukhari, S.N.S.; Alhazaa, A. Preparation and numerical optimization of TiO2 thin films in double perovskite solar cell. Energies 2023, 16, 900. [Google Scholar] [CrossRef]
- Adhikari, A.; Diaz, J.E.C.; Reyes-Vallejo, O.; Cano, F.J.G.; Amador, M.D.L.L.O.; Subramaniam, V. Analysis of hybrid-deposited CI(G)Se thin films and theoretical modeling of their properties through SCAPS-1D software. Mater. Today Commun. 2023, 34, 105338. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Rockett, A. A new simulation software of solar cells—wxAMPS. Sol. Energy Mater. Sol. Cells 2012, 98, 124–128. [Google Scholar] [CrossRef]
- Stangl, R.; Leendertz, C. General principles of solar cell simulation and introduction to AFORS-HET. In Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells; Springer: Berlin/Heidelberg, Germany, 2012; pp. 445–458. [Google Scholar] [CrossRef]
- Demchenko, O.; Zykov, D.; Kurbanova, N. Research possibilities of Silvaco TCAD for physical simulation of gallium nitride power transistor. AIP Conf. Proc. 2016, 1772, 060007. [Google Scholar] [CrossRef]
- Kumar, M.R.; Mohapatra, S.K.; Pradhan, K.P.; Sahu, P.K. A simple analytical center potential model for cylindrical gate all around (CGAA) MOSFET. J. Electron. Devices 2014, 19, 1648–1653. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=557d24a717a34eca0d4990e65a8cc4c91f9dccaf (accessed on 4 October 2024).
- Khoshsirat, N.; Yunus, N.A.; Hamidon, M.N.; Shafie, S.; Amin, N. Analysis of absorber and buffer layer band gap grading on CIGS thin film solar cell performance using SCAPS. Pertanika J. Sci. Technol. 2015, 23, 241–250. [Google Scholar]
- Walker, A.W. Bandgap Engineering of Multi-Junction Solar Cells Using Nanostructures for Enhanced Performance under Concentrated Illumination. Ph.D. Dissertation, University of Ottawa, Ottawa, ON, Canada, 2013. Available online: https://ruor.uottawa.ca/server/api/core/bitstreams/0e902aec-285b-4e14-be2e-4a6ba7505d4b/content (accessed on 4 October 2024).
- Talhi, A.; Talhi, A.; Belghachi, A.; Moughli, H.; Amiri, B.; Varani, L. Numerical simulation of multi-quantum well solar cells GaAs/InAs using Silvaco Atlas. Dig. J. Nanomater. Biostructures 2016, 11, 1361–1366. Available online: https://www.chalcogen.ro/1361_AbdelkrimT.pdf (accessed on 4 October 2024).
- Meel, K.; Mahala, P.; Singh, S. Design and Fabrication of Multi Quantum Well based GaN/InGaN Blue LED. IOP Conf. Ser. Mater. Sci. Eng. 2018, 331, 012008. [Google Scholar] [CrossRef]
- Ozurumba, A.C.; Ogueke, N.V.; Madu, C.A.; Danladi, E.; Mbachu, C.P.; Yusuf, A.S.; Hossain, I. SCAPS-1D simulated organometallic halide perovskites: A comparison of performance under Sub-Saharan temperature condition. Heliyon 2024, 10, e29599. [Google Scholar] [CrossRef]
- Degrave, S.; Burgelman, M.; Nollet, P. Modelling of polycrystalline thin film solar cells: New features in SCAPS version 2.3. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003; Volume 1, pp. 487–490. Available online: https://ieeexplore.ieee.org/abstract/document/1305327 (accessed on 4 October 2024).
- Chaffee, D.W.; Wang, X.; Bermel, P. Simulating Nanoscale Optics in Photovoltaics with the S-Matrix Method. 2014. Available online: https://api.semanticscholar.org/CorpusID:44212007 (accessed on 7 August 2024).
- Leon, C.; Saint-Cast, P.; Fell, A.; Greulich, J.; Rein, S. On the Robustness of the Determination of Metal-Induced Recombination from Photoluminescence Images on Solar Cells. Sol. RRL 2023, 7, 22. [Google Scholar] [CrossRef]
- Dullweber, T.; Kranz, C.; Baumann, U.; Hesse, R.; Walter, D.; Schmidt, J.; Brendel, R. Silicon wafer material options for highly efficient p-type PERC solar cells. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16–21 June 2013; pp. 3074–3078. [Google Scholar] [CrossRef]
- Schindler, F.; Michl, B.; Kleiber, A.; Steinkemper, H.; Schön, J.; Kwapil, W.; Schubert, M.C. Potential gain in multicrystalline silicon solar cell efficiency by n-type doping. IEEE J. Photovolt. 2014, 5, 499–506. [Google Scholar] [CrossRef]
- Tala-Ighil, R.; Boumaour, M. Numerical simulation of silicon based solar cells with a degenerated SnO2: F window layer. Eur. Phys. J.-Appl. Phys. 2007, 40, 253–256. [Google Scholar] [CrossRef]
- Zeman, M.; Krc, J. Electrical and Optical Modelling of Thin-Film Silicon Solar Cells. MRS Proc. 2006, 989, 301. [Google Scholar] [CrossRef]
- Alam, I.; Mollick, R.; Ashraf, M.A. Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the charge transport layers. Phys. B Condens. Matter 2021, 618, 413187. [Google Scholar] [CrossRef]
- SCAPS-1D Lecture 4—Handout. Available online: https://www.utoledo.edu/med/depts/radther/pdf/SCAPS-1D%20Lecture%204%20-%20handout.pdf (accessed on 1 August 2024).
- Guillemoles, J.F.; Kirchartz, T.; Cahen, D.; Rau, U. Guide for the perplexed to the Shockley–Queisser model for solar cells. Nat. Photonics 2019, 13, 501–505. [Google Scholar] [CrossRef]
- Laska, M.; Krzemińska, Z.; Kluczyk-Korch, K.; Schaadt, D.; Popko, E.; Jacak, W.A.; Jacak, J.E. Metallization of solar cells, exciton channel of plasmon photovoltaic effect in perovskite cells. Nano Energy 2020, 75, 104751. [Google Scholar] [CrossRef]
- Zhang, J.; Lee, S.T.; Sun, B. Effect of series and shunt resistance on organic-inorganic hybrid solar cells performance. Electrochim. Acta 2014, 146, 845–849. [Google Scholar] [CrossRef]
- Zeman, M.; Isabella, O.; Solntsev, S.; Jäger, K. Modelling of thin-film silicon solar cells. Sol. Energy Mater. Sol. Cells 2013, 119, 94–111. [Google Scholar] [CrossRef]
- Li, G.; Liu, L.; Wei, F. Modeling and Simulation of Organic Photovoltaic Cells. Model. Control. Micro/Nano Devices Syst. 2013, 31, 24. [Google Scholar] [CrossRef]
- Nelson, J.; Kwiatkowski, J.J.; Kirkpatrick, J.; Frost, J.M. Modeling charge transport in organic photovoltaic materials. Acc. Chem. Res. 2009, 42, 1768–1778. [Google Scholar] [CrossRef]
- Malm, U.; Edoff, M. 2D device modelling and finite element simulations for thin-film solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 1066–1069. [Google Scholar] [CrossRef]
- Krc, J. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar] [CrossRef]
- Riquelme, A.J.; Valadez-Villalobos, K.; Boix, P.P.; Oskam, G.; Mora-Seró, I.; Anta, J.A. Understanding equivalent circuits in perovskite solar cells. Insights from drift-diffusion simulation. Phys. Chem. Chem. Phys. 2022, 24, 15657–15671. [Google Scholar] [CrossRef] [PubMed]
- Cozza, D.; Ruiz, C.M.; Duché, D.; Giraldo, S.; Saucedo, E.; Simon, J.J.; Escoubas, L. Optical modeling and optimizations of Cu2ZnSnSe4 solar cells using the modified transfer matrix method. Opt. Express 2016, 24, A1201–A1209. [Google Scholar] [CrossRef] [PubMed]
- Parisi, A.; Curcio, L.; Rocca, V.; Stivala, S.; Cino, A.C.; Busacca, A.C.; Ricco Galluzzo, G. Thin film CIGS solar cells, photovoltaic modules, and the problems of modeling. Int. J. Photoenergy 2013, 2013, 817424. [Google Scholar] [CrossRef]
- Belarbi, M.; Benyoucef, A.; Benyoucef, B. Simulation of the solar cells with PC1D, application to cells based on silicon. Adv. Energy: Int. J. (AEIJ) 2014, 1, 1–10. [Google Scholar] [CrossRef]
- Raman, A.; Chaturvedi, C.; Kumar, N. Multi-Quantum Well-Based Solar Cell. Electr. Electron. Devices Circuits Mater. Chall. Mod. Technol. 2021, 351–372. [Google Scholar] [CrossRef]
- ElKhamisy, K.; Abdelhamid, H.; El-Rabaie, E.S.M.; Abdel-Salam, N. A Comprehensive Survey of Silicon Thin-film Solar Cell: Challenges and Novel Trends. Plasmonics 2024, 19, 1–20. [Google Scholar] [CrossRef]
- Khoshsirat, N.; Yunus, N.A.M. Numerical simulation of CIGS thin film solar cells using SCAPS-1D. In Proceedings of the 2013 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (CSUDET), Selangor, Malaysia, 30 May–1 June 2013; pp. 63–67. [Google Scholar] [CrossRef]
- Hasani, A.H.; Abdullah, S.F.; Zuhdi, A.W.M.; Bahrudin, M.S.; Za’Abar, F.; Harif, M.N. Modelling and simulation of photovoltaic solar cell using silvaco TCAD and matlab software. In Proceedings of the 2018 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 15–17 August 2018; pp. 214–217. [Google Scholar] [CrossRef]
- Komilov, M. Study of the effect of optical layer thickness on the photoelectric parameters of silicon-based solar cells using Sentaurus TCAD. Sci. Eur. 2021, 72-1, 52–54. [Google Scholar]
First Generation Uses Inorganic Semiconductor Materials in Bulk | Second Generation Uses Thin-Film Inorganic Semiconductor Materials | Third Generation Uses Organic, Inorganic, and Hybrid Semiconductor Materials | Third Generation/Emerging Include Technologies for the New Generations |
---|---|---|---|
Based on Crystalline Silicon (c-Si) [18] | Based on Thin-Film Silicon or Amorphous Silicon (a-Si) [19] | Perovskite Solar Cells [20] | Nanostructured Solar Cells (Nanocrystals, Nanowire, Nanotubes, Nanorods, Nanofiber, etc.) [21,22] |
Based on Polycrystalline Silicon [18] | Based on binary compounds: IV–IV, III–V, II–VI and IV–VI (GaAs, CdTe, etc.) [23] | Organic Photovoltaics (OPV): Carbon-Based Materials, Fullerenes, Polymers and Small Molecules [17,21] | Plasmonic Solar Cells [15] |
Based on Heterojunction with Intrinsic Thin layer (HJT) [13] | Based on Kesterite: Copper, Zinc, Tin, Sulfide or Selenide or Sulfoselenide (CZTS, CZTSe, CZTSSe) [24] | Dye-Sensitized Solar Cells (DSSC) [25] | Flexible, Ultra-Thin, Ultra-Light, 3D-Printable Solar Cells [26] |
Based on Gallium Arsenide (GaAs) [27] | Based on Titanium Oxide (TiO2) [27] | Quantum Dot Solar Cells [17] | Transparent and Semi-Transparent Solar Cells [23,26] |
Based on Gallium Arsenide Selenide (GaAsSe) [28] | Tandem Solar Cells [29] | Photonic Crystal Solar Cells [30] | |
Based on Chalcogenides: Sulfides, Selenides, Tellurides (CdTe, CuS, SnS, MoS, etc.) [31] | Multi-Junction Solar Cells [23,29] | Black Silicon Solar Cells [32] | |
Based on Chalcopyrite: Copper, Indium, Gallium, Selenide (CIS, CIGS) [33] | Hybrid Solar Cells [11] | Solar Cells based on Graphene, Graphene Oxide (GO), reduced Graphene (rGO), Graphite, and Nano-Graphite [34] | |
Hot Carrier Solar Cells [35] | |||
Luminescent Solar Concentrators [36] |
Type of Modelling | Strengths | Weaknesses | Uses in Research |
---|---|---|---|
Band Diagram Modeling [38] | Allows visualization of band alignment and potential barriers. | Difficult to apply in complex materials, multiple layers, or heterostructures. | Device design and analysis of carrier transport efficiency. |
Quantum Efficiency (QE) Modeling [39] | Analyzes the fraction of photons that generate useful charge carriers. | Does not account for other effects like recombination or resistive losses. | Study of spectral response and photon-to-current conversion. |
Spectral Response Modeling [40] | Allows measurement of efficiency at different wavelengths. | Does not account for thermal losses or recombination effects. | Evaluation of spectral efficiency under various solar light conditions. |
Optical Modeling [41] | Simulates light absorption and reflection within the cell structure. | Limited in long-term simulations or extreme operating conditions. | Optimization of light absorption to maximize quantum efficiency. |
Light Trapping and Scattering Modeling [41] | Optimizes light capture in thin-film cells. | Complex to implement in advanced geometries. | Maximization of light absorption in thin-film structures. |
I–V Modeling [41] | Provides information on efficiency, short-circuit current, and open-circuit voltage. | Insufficient for modeling dynamic or transient effects. | Characterization of overall device efficiency under different light conditions. |
Electrical Modeling [41] | Studies the general electrical behavior of the device under different conditions. | Does not capture all optical or thermal phenomena. | Overall evaluation of electrical efficiency and performance under operating conditions. |
Carrier Transport Modeling [42] | Allows detailed analysis of electron and hole movement within the cell. | Difficult to implement in devices with complex geometries or materials. | Simulation of charge transport to improve carrier mobility. |
Recombination Mechanism Modeling [40] | Analyzes the rates and mechanisms of recombination within the device. | Difficult to model accurately in non-conventional materials. | Study of recombination to minimize losses in cell efficiency. |
Series and Shunt Resistance Modeling [43] | Provides information on resistive losses within the device. | Cannot capture other non-resistive loss mechanisms. | Optimization of series and shunt resistances to improve conversion efficiency. |
Material Properties Modeling [44] | Allows analysis of the impact of material properties on overall performance. | Requires precise data for the materials used. | Simulation of new materials or material combinations to improve efficiency. |
Capacitance Modeling [45] | Useful for studying junction capacitance and behavior in response to frequencies. | Limited to specific operating conditions. | Analysis of capacitance as a function of frequency to characterize junction quality. |
ETL and HTL Modeling [45] | Enables detailed analysis of electron and hole transport through selective layers. | Difficult to model interfaces and defects between layers accurately. | Optimization of ETL and HTL materials for improving charge carrier selectivity, minimizing recombination, and enhancing overall device efficiency. |
Doping and Defect Modeling [46] | Evaluates the effect of doping and defects on cell performance. | It requires precise data and is difficult to validate experimentally. | Study of the impact of doping levels and defects on efficiency and device lifetime. |
Interface Modeling [42] | Evaluates behavior at interfaces between different material layers. | Complex to simulate multiple interfaces. | Improvement in efficiency and reduction in recombination losses at interfaces. |
Multi-Junction Modeling [45] | Studies the behavior of multi-junction devices to optimize efficiency. | Complexity in simulating multiple junctions. | Research of high-efficiency multi-junction solar cells. |
Thermal Modeling [43] | Studies the effect of heat on device performance. | Difficult to integrate with optical or electrical models in complex simulations. | Simulation of behavior under extreme or fluctuating thermal conditions. |
Transient Response Modeling [40] | Analyzes device behavior under rapid changes in illumination conditions. | Does not fully capture long-term effects. | Study of device response under fluctuating light conditions. |
Photocurrent and Photovoltage Modeling [41] | Evaluates current and voltage generation under different lighting conditions. | Does not fully model long-term effects or degradation. | Optimization of the balance between photocurrent and photovoltage. |
Lifetime and Degradation [44] Modeling | Evaluates long-term durability and efficiency. | Requires precise and long-term data, making implementation challenging. | Study of lifetime and degradation in efficiency over time. |
Multiscale Modeling [42] | Integrates phenomena across different scales into a single simulation. | High computational load and difficult to validate experimentally. | Analysis of effects occurring at different spatial and temporal scales within the device. |
Stress Effects Modeling [43] | Studies the impact of mechanical stresses on device structure. | Cannot capture all microstructural effects. | Analysis of structural integrity and mechanical durability under variable operating conditions. |
Noise Modeling [44] | Analyzes the impact of electrical noise on device performance. | Relevant primarily in very high-efficiency devices. | Study of noise in the device to reduce interference. |
Type of Modelling | Strengths | Weaknesses | Uses in Research |
---|---|---|---|
Finite Element Method (FEM) [52] | High accuracy for complex geometries and material properties; flexible meshing. | Computationally expensive, especially for large-scale problems. | Used in modeling stress, strain, and electric fields. |
Finite Difference Method (FDM) [53] | Simple to implement; suitable for problems with regular geometries and grid structures. | Difficult to apply to complex geometries; limited accuracy in regions with sharp changes. | Solving time-dependent diffusion equations in drift–diffusion models of thin-film solar cells. |
Finite Volume Method (FVM) [54] | Conserves fluxes across control volumes; suitable for problems involving conservation laws. | Requires structured grid; can be less accurate near boundaries. | Modeling the electrostatic potential and charge transport in thin-film solar cells. |
Euler Method [55] | Easy to implement and fast for simple problems. | Low accuracy; highly dependent on time step size; unstable for stiff problems. | Basic drift–diffusion simulations in solar cells when high precision is not required. |
Drift–Diffusion Modeling [39] | Provides a detailed representation of charge carrier transport under electric fields. | Computationally demanding; requires precise knowledge of material parameters. | Carrier transport analysis and efficiency prediction in thin-film solar cells. |
Transfer Matrix Method (TMM) [56] | Efficient for calculating optical properties in multi-layered thin-film structures. | Only applicable to planar, periodic structures; assumes perfect interfaces. | Optical absorption and reflectivity analysis in thin-film solar cells. |
S-Matrix Method [57] | Accurate for analyzing scattering properties of multi-layered media; stable numerical method. | Requires complex computations; limited applicability to highly disordered structures. | Optical analysis of reflection and transmission in multi-layered thin films. |
Gummel’s Method [58] | Iterative method suited for solving Poisson’s equation in semiconductor devices. | Convergence can be slow for heavily doped regions; limited to low-injection conditions. | Used in solving semiconductor device equations in thin-film solar cells. |
Newton–Raphson Method [55] | Fast convergence for nonlinear problems; useful for refining solutions in iterative processes. | May not converge if initial guess is poor; computationally expensive for large systems. | Applied to solving nonlinear drift–diffusion equations in thin-film solar cells. |
Fermi–Dirac Statistics [59] | Essential for modeling charge carriers in semiconductors, especially at quantum scale. | Difficult to apply without proper understanding of quantum mechanics; complex to solve numerically. | Carrier distribution modeling in highly doped or quantum-confined thin-film solar cells. |
Multi-Quantum Well structures (MQW) [60] | Provides enhanced optical absorption and carrier confinement in thin layers. | Requires complex fabrication techniques and precise quantum mechanical modeling. | Enhancing absorption in thin-film solar cells through quantum well engineering. |
Software | 1st Generation Materials | 2nd Generation Materials | 3rd Generation Materials |
---|---|---|---|
SCAPS | Si, GaAs | CdTe, CIS, CIGS, CZTS | Kesterite, Perovzkite |
AMPS | Si, GaAs | CdTe, CIGS, CZTS | CZTS |
ASA | Si, GaAs | CdTe, CIGS | Multi-layer heterojunction |
AFORS-HET | Si, GaAs | CdTe, CIGS, a-Si | a-Si |
SC-SIMUL | Si, GaAs | CdTe, CIGS | a-Si |
ASPIN3 | Si, GaAs | CdTe, CIGS | LEDs and lasers |
GPVDM | Si, GaAs | CdTe, CIGS | Perovskite, Organic |
SESAME | Si, GaAs | CdTe, CIGS, Perovskite | Perovskite |
SILVACO | Si, GaAs | a-Si, CdTe, CIGS | Multi-materials |
PC1D | Si | a-Si | Ge |
SENTAURUS | Si, GaAs | CdTe, CIGS | Multi-materials |
ADEPT | Si, GaAs | a-Si, CdTe, CIS | Multi-junction |
QUOKKA | Si | a-Si, CdTe, CIGS | Quasi-neutral Si |
Modeling | SCAPS | AMPS | ASA | AFORS-HET | SC-SIMUL | ASPIN3 | GPVDM | SESAME | SILVACO | PC1D | SENTAURUS | ADEPT | QUOKKA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Electronic and Optical Properties Modeling | |||||||||||||
Band Diagram Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
Quantum Efficiency Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
Spectral Response Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
Optical Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
Light Trapping and Scattering Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
2. Electrical and Transport Phenomena Modeling | |||||||||||||
Current–Voltage (I–V) Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
Electrical Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
Carrier Transport Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
Recombination Mechanism Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
Series and Shunt Resistance Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
Material Properties Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
Capacitance Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
3. Device Structure and Interface Modeling | |||||||||||||
Absorber Layer Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
Doping and Defect Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
Interface Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
Multi-Junction Modeling | x | x | x | x | x | x | x | x | |||||
Lifetime Modeling | x | x | x | x | x | x | x | x | x | ||||
ETL and HTL Modeling | x | x | x | x | x | x | |||||||
4. Thermal and Transient Response Modeling | |||||||||||||
Thermal Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
Transient Response Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
5. Performance Metric Modeling | |||||||||||||
Photocurrent and Photovoltage Modeling | x | x | x | x | x | x | x | x | x | x | x | x | x |
Degradation Modeling | x | ||||||||||||
6. Multiscale and Noise Modelling | |||||||||||||
Multiscale Modeling | x | x | |||||||||||
Stress Effects | x | x | x | x | x | x | x | x | x | ||||
Noise Modeling | x |
Modeling | SCAPS | AMPS | ASA | AFORS-HET | SC-SIMUL | ASPIN3 | GPVDM | SESAME | SILVACO | PC1D | SENTAURUS | ADEPT | QUOKKA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Numerical Methods for Differential Equations | |||||||||||||
FEM | x | x | x | x | x | x | x | x | x | x | x | x | x |
Finite Difference Method | x | x | x | x | x | x | x | x | x | x | x | ||
FVM | x | x | |||||||||||
Euler Method | x | ||||||||||||
Drift–Diffusion Method | x | x | x | x | x | x | x | x | x | x | x | x | |
2. Matrix and Interactive Methods | |||||||||||||
Transfer Matrix Method | x | x | x | x | x | x | x | ||||||
S-Matrix Method | x | ||||||||||||
Gummel Iteration | x | x | x | x | x | x | |||||||
Newton Rapson | x | x | x | x | x | x | |||||||
3. Statistical and Quantum Mechanic Methods | |||||||||||||
Fermi–Dirac Statistics | x | ||||||||||||
Monte Carlo Method | x | ||||||||||||
4. Advanced Structures and Materials Mode | |||||||||||||
MQW | x |
Software | Source | Availability |
---|---|---|
One-dimensions | ||
SCAPS | http://scaps.elis.ugent.be/ (accessed on 4 October 2024). | Free and open source |
AMPS/wxAMPS | https://github.com/wxAMPS (accessed on 4 October 2024). | USD 0 per month for basics for individuals and organizations USD 3.67 per user/month for the first 12 months for advanced collaboration for individuals and organizations USD 19.35 per user/month for the first 12 months for security, compliance, and flexible deployment |
ASA | https://asa.ewi.tudelft.nl/ (accessed on 4 October 2024). | Command-line-driven software |
AFORS-HET | https://www.helmholtz-berlin.de/forschung/oe/se/silizium-photovoltaik/projekte/asicsi/afors-het/download/index_en.html (accessed on 4 October 2024). | Free and open source |
SC-SIMUL | http://www.greco.uni-oldenburg.de/download.html (accessed on 4 October 2024). | Free and open source |
Two-dimensions | ||
ASPIN3 | http://lpvo.fe.uni-lj.si/en/software/aspin3/ (accessed on 4 October 2024). | Demo version |
GPVDM | https://www.oghma-nano.com/download.php (accessed on 4 October 2024). | Free source |
SESAME | https://pages.nist.gov/sesame/ (accessed on 4 October 2024). | USD 0 per month for basics for individuals and organizations USD 3.67 per user/month for the first 12 months for advanced collaboration for individuals and organizations USD 19.25 per user/month for the first 12 months for security, compliance, and flexible deployment |
Three-dimensions | ||
SILVACO | https://dynamic.silvaco.com/dynamicweb/silen/ (accessed on 4 October 2024). | There are various licensing models, such as perpetual licenses, subscription-based licenses, or academic licenses. The cost can also depend on the size and type of organization (e.g., educational institution, research organization, commercial company). |
PC1D/PC3D | https://www.engineering.unsw.edu.au/energy-engineering/research/software-data-links/pc1d-software-for-modelling-a-solar-cell (accessed on 4 October 2024). | It is freely available for academic and educational purposes. Commercial users or organizations may need to purchase a license, which can vary depending on the organization’s size, intended usage, and specific licensing requirements. |
SENTAURUS | www.synopsys.com/support/training/dfm/basic-training-on-tcad-sentaurus-tools.html (accessed on 4 October 2024). | Universities and research institutions may have access to academic licenses or discounted rates for academic and research purposes. For commercial usage, the cost involves purchasing licenses or subscriptions based on the organization’s size, intended usage, and specific requirements. The pricing structure may include upfront license fees, annual maintenance fees, and additional technical support and updates fees. |
ADEPT | https://nanohub.org/tools/adeptnpt (accessed on 4 October 2024). | The costs vary depending on the license type (individual, institutional, commercial), the scope of usage (academic, research, commercial), and any additional services or support provided. |
QUOKKA | https://www.quokka3.com/purchase/license-options.html (accessed on 4 October 2024). | It is freely available for academic and educational purposes. Licensed for commercial use |
Voc (V) | Jsc (mA/cm2) | FF (%) | FPE (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cell Configuration | SCAPS | AMPS | Exp. | SCAPS | AMPS | Exp. | SCAPS | AMPS | Exp. | SCAPS | AMPS | Exp. |
FTO/TiO2/CH3NH3PbI3/Spiro/Au | 1.12 | 1.27 | 1.02 | 24.32 | 21.58 | 21.20 | 81.86 | 79.00 | 77.60 | 22.35 | 20.00 | 18.70 |
FTO/TiO2/CH3NH3PbI3/Au | 0.85 | 0.90 | 0.82 | 20.19 | 22.95 | 18.10 | 82.88 | 81.49 | 78.20 | 1770 | 17.01 | 12.60 |
FTO/TiO2/CH3NH3PbI3/CuSCN/Au | 1.21 | 1.24 | 1.10 | 20.62 | 23.19 | 19.70 | 79.79 | 77.72 | 75.00 | 20.00 | 22.38 | 18.40 |
FTO/TiO2/CH3NH3PbI3/CiI/Au | 1.01 | 1.07 | 0.95 | 21.31 | 23.08 | 19.80 | 80.77 | 78.64 | 76.00 | 17.54 | 19.60 | 15.50 |
FTO/TiO2/CH3NH3PbI3/NiO/Au | 1.01 | 1.13 | 0.93 | 20.23 | 22.00 | 18.90 | 81.46 | 79.38 | 77.00 | 17.28 | 19.89 | 16.20 |
FTO/ZnO/CH3NH3PbI3/NiO/Au | 0.99 | 1.04 | 25.62 | 26.02 | 80.03 | 79.45 | 21.87 | 20.67 | ||||
FTO/SnO2/CH3NH3PbI3/NiO/Au | 0.99 | 1.02 | 25.73 | 25.87 | 75.45 | 74.83 | 19.36 | 18.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado-Conrado, L.; Álvarez-Macías, C.; Reyes-Durán, B. A Review of Simulation Tools for Thin-Film Solar Cells. Materials 2024, 17, 5213. https://doi.org/10.3390/ma17215213
Salgado-Conrado L, Álvarez-Macías C, Reyes-Durán B. A Review of Simulation Tools for Thin-Film Solar Cells. Materials. 2024; 17(21):5213. https://doi.org/10.3390/ma17215213
Chicago/Turabian StyleSalgado-Conrado, Lizbeth, Carlos Álvarez-Macías, and Bernardo Reyes-Durán. 2024. "A Review of Simulation Tools for Thin-Film Solar Cells" Materials 17, no. 21: 5213. https://doi.org/10.3390/ma17215213
APA StyleSalgado-Conrado, L., Álvarez-Macías, C., & Reyes-Durán, B. (2024). A Review of Simulation Tools for Thin-Film Solar Cells. Materials, 17(21), 5213. https://doi.org/10.3390/ma17215213