Experimental Study on the Effect of Calcium Aluminate Cement Addition on the Drying and Physical Properties of Refractory Castables Containing Colloidal Silica †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Physical Tests
3.2. FESEM and EDS
3.3. Drying Tests
- The sample with 0% CAC (Figure 5a) remained completely intact after drying, with no observable cracks. The heating rate of the sample was steady, except between 110 °C to 140 °C, where it slowed down;
- A large crack occurred in the sample with 0.5% CAC (Figure 5b). The temperature measurement was damaged when the large crack occurred, which can be seen from the erratic heating rate data in Figure 6 between 7.5 h and 11 h. Water vapor passed by the thermocouple at that moment, disrupting the measurement. The damage occurred when the temperature in the center of the piece reached 120 °C;
- Drying the sample with 1% CAC resulted in extensive spalling and significant damage (Figure 5c). The heating rate of the sample spiked when the element’s temperature reached 120 °C. This is probably the time of the damage;
- Drying the sample with 1.5% CAC resulted in an explosion inside the sample. The damage was the most severe of all the samples, as shown in Figure 5d. The explosion occurred when the internal temperature of the element reached 150 °C.
3.4. Practical Implications
3.5. Outlook
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
AH3 | Al(OH)3-Gibbsite-Bayerite |
BSE | Backscattered electron |
CAC | Calcium aluminate cement |
C2AH8 | Ca2Al2O13H16—Dicalcium aluminate octahydrate |
C3AH6 | Ca3[Al(OH)6]2—Katoite-Hydrogarnet |
CaO | Calcium oxide |
CCS | Cold crushing strength |
EDS | Energy-dispersive X-ray spectroscopy |
FESEM | Field-Emission Scanning Electron Microscope |
HA | Hydratable alumina |
MgO | Magnesium oxide |
PLC | Permanent linear change |
SiO2 | Silicon dioxide |
α-Al2O3 | Alpha aluminium oxide |
References
- Nouri-Khezrabad, M.; Braulio, M.A.L.; Pandolfelli, V.C.; Golestani-Fard, F.; Rezaie, H.R. Nano-Bonded Refractory Castables. Ceram. Int. 2013, 39, 3479–3497. [Google Scholar] [CrossRef]
- Da Luz, A.P.; Braulio, M.D.A.L.; Pandolfelli, V.C. Refractory Castable Engineering; Göller Verlag GmbH: Baden-Baden, Germany, 2015. [Google Scholar]
- Luz, A.P.; Moreira, M.H.; Braulio, M.A.L.; Parr, C.; Pandolfelli, V.C. Drying Behavior of Dense Refractory Ceramic Castables. Part 1—General Aspects and Experimental Techniques Used to Assess Water Removal. Ceram. Int. 2021, 47, 22246–22268. [Google Scholar] [CrossRef]
- Luz, A.P.; Moreira, M.H.; Salomão, R.; Braulio, M.A.L.; Pandolfelli, V.C. Drying Behavior of Dense Refractory Castables. Part 2—Drying Agents and Design of Heating Schedules. Ceram. Int. 2022, 48, 2965–2987. [Google Scholar] [CrossRef]
- Parr, C.; Aluminates, I.; Wohrmeyer, C.; Touzo, B.; Bell, D. Technical Paper; The Role of Calcium Aluminate Cement During the Installation and Dry Out of High Purity Alumina Castables; Stahl und Eisen: Neuss, Germany, 2001. [Google Scholar]
- Gao, S.; Zhang, P.; Li, N.; Zhang, J.; Luan, J.; Ye, G.; Liao, G. Effect of CAC Content on the Strength of Castables at Temperatures between 300 and 1000 °C. Ceram. Int. 2020, 46, 14957–14963. [Google Scholar] [CrossRef]
- Moreira, M.H.; Peng, H.; Pont, S.D.; Pandolfelli, V.C. Can a Laboratory Experiment Express the Size Effect on the Drying of Refractory Castables? Ceram. Int. 2023, 49, 39428–39440. [Google Scholar] [CrossRef]
- Bayoumi, I.M.I.; Ewais, E.M.M.; El-Amir, A.A.M. Rheology of Refractory Concrete: An Article Review. Bol. Soc. Esp. Ceram. Vidr. 2021, 61, 453–469. [Google Scholar] [CrossRef]
- Liu, H.; Chen, W.; Pan, R.; Shan, Z.; Qiao, A.; Drewitt, J.W.E.; Hennet, L.; Jahn, S.; Langstaff, D.P.; Chass, G.A.; et al. From Molten Calcium Aluminates through Phase Transitions to Cement Phases. Adv. Sci. 2020, 7, 1902209. [Google Scholar] [CrossRef]
- Lee, W.E.; Vieira, W.; Zhang, S.; Ahari, K.G.; Sarpoolaky, H.; Parr, C. Castable Refractory Concretes. Int. Mater. Rev. 2001, 46, 145–167. [Google Scholar] [CrossRef]
- Myhre, B. Let´s Make a Mullite Matrix! Refract. Appl. News 2008, 13, 11–19. [Google Scholar]
- Salomão, R. Colloidal Silica as a Nanostructured Binder for Refractory Castables. Refract. Appl. News 2006, 11, 16–20. [Google Scholar]
- Peng, H.; Myhre, B. Improvements in drying behaviour and explosion resistance of microsilica-gel bonded no-cement castables. Refract. WorldForum 2017, 9, 61–65. [Google Scholar]
- Dos Anjos, R.D.; Ismael, M.R.; De Oliveira, I.R.; Pandolfelli, V.C. Workability and Setting Parameters Evaluation of Colloidal Silica Bonded Refractory Suspensions. Ceram. Int. 2008, 34, 165–171. [Google Scholar] [CrossRef]
- Nouri-Khezrabad, M.; Luz, A.P.; Salvini, V.R.; Golestani-Fard, F.; Rezaie, H.R.; Pandolfelli, V.C. Developing Nano-Bonded Refractory Castables with Enhanced Green Mechanical Properties. Ceram. Int. 2015, 41, 3051–3057. [Google Scholar] [CrossRef]
- Xiong, J.; Peng, Y.; Xie, D.; Mao, X. The Characteristics of Silica-Sol Combining Refractories. Adv. Mater. Res. 2012, 396–398, 288–291. [Google Scholar] [CrossRef]
- Braulio, M.A.L.; Tontrup, C.; Medeiros, J.; Pandolfelli, V.C. Colloidal Alumina as a Novel Castable Bonding System. Refract. Worldforum 2011, 3, 135–141. [Google Scholar]
- Burgos-Montes, O.; Álvarez, M.; Restrepo, E.; De Aza, A.H.; Pena, P.; Baudín, C. Influence of the silica gel technology on the high temperature mechanical behaviour of alumina castables. In Proceedings of the UNITECR 2017—15th Biennial Worldwide Congress, Santiago, Chile, 26–29 September 2017. [Google Scholar]
- Jia, Q.; Zhang, J.; Zhou, Y.; Jia, G.; Liu, X. Effect of Microsilica Addition on the Properties of Colloidal Silica Bonded Bauxite-Andalusite Based Castables. Ceram. Int. 2018, 44, 3064–3068. [Google Scholar] [CrossRef]
- Qiu, W.; Ruan, G.; Zhang, Z. Properties of Silica Sol Bonded Corundum-Spinel Castables for Steel Ladles. Int. J. Appl. Ceram. Technol. 2018, 15, 1182–1189. [Google Scholar] [CrossRef]
- Nouri-Khezrabad, M.; Luz, A.P.; Salvini, V.R.; Golestani-Fard, F.; Rezaie, H.R.; Pandolfelli, V.C. PaPers Novel Engineering Route to Improve the Green Mechanical Properties of Nano-Bonded Refractory Castables. Refract. WorldForum 2015, 7, 1–5. [Google Scholar]
- Yaghoubi, H.; Sarpoolaky, H.; Golestanifard, F.; Souri, A. Influence of nano silica on properties and microstructure of high alumina ultra-low cement refractory castables. J. Mater. Sci. Eng. 2012, 9, 50–80. [Google Scholar]
- Piippo, A.; Ruotanen, K.; Visuri, V.-V.; Poutiainen, N.; Heikkinen, E.-P. Observations on the strength and drying performance of SolCast castables. In Proceedings of the Unitecr 2023, Frankfurt, Germany, 26–29 September 2023. [Google Scholar]
- Cunha, T.M.; Moreira, M.H.; Santos, M.F.; Angélico, R.A.; Pandolfelli, V.C. A Simple Methodology Based on Numerical Analysis for the Drying Curve Design of a Castable Lined Steel Ladle. Open Ceram. 2023, 13, 100330. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhu, B.; Chen, P. Microstructure Evolution during the Heating Process and Its Effect on the Elastic Properties of CAC-Bonded Alumina Castables. Ceram. Int. 2016, 42, 11355–11362. [Google Scholar] [CrossRef]
Raw Materials | 0 wt.% CAC | 0.5 wt.% CAC | 1 wt.% CAC | 1.5 wt.% CAC |
---|---|---|---|---|
Tabular alumina 0–10 mm (Almatis, Germany) | 84.8 | 84.3 | 83.8 | 83.3 |
Calcined alumina (Almatis, Germany) | 12.9 | 12.9 | 12.9 | 12.9 |
Dead-burned MgO (China) | 0.2 | 0.2 | 0.2 | 0.2 |
CAC 70% (CA-14 Almatis, The Netherlands) | 0 | 0.5 | 1 | 1.5 |
Colloidal silica suspension (40 wt.% solids) | 2% solids | 2% solids | 2% solids | 2% solids |
Dispersant | 0.1 | 0.1 | 0.1 | 0.1 |
Water (wt.%) | 3.5% | 3.5% | 3.5% | 3.5% |
Test Series | Laboratory-Scale | Industrial-Scale | Note |
---|---|---|---|
Cold Crushing Strength | X | EN 933-5:2018 | |
Density | X | ISO 1927:2012 | |
Permanent Linear Change | X | ISO 1927:2012 | |
Weight Loss | X | Equation (1) | |
FESEM Analysis | X | Thermal-treated at 1600 °C | |
Casting Properties | X | X | ASTM 860 |
Drying Properties | X | 0.5 m × 0.5 m × 0.5 m cubic |
0 wt.% CAC | 0.5 wt.% CAC | 1 wt.% CAC | 1.5 wt.% CAC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T (°C) | Property | Value | Avg. | St. Dev. | Value | Avg. | St. Dev. | Value | Avg. | St. Dev. | Value | Avg. | St. Dev. |
20 °C | CCS (MPa) | 12.54 | 22.08 | 8.30 | 12.38 | 22.72 | 9.04 | 19.37 | 33.87 | 2.11 | 30.92 | 33.23 | 2.47 |
26.12 | 26.65 | 32.37 | 32.93 | ||||||||||
27.59 | 29.14 | 35.36 | 35.84 | ||||||||||
Density (kg/m3) | 3.14 | 3.10 | 0.04 | 3.1 | 3.08 | 0.03 | 3.11 | 3.08 | 0.03 | 3.01 | 3.05 | 0.04 | |
3.09 | 3.05 | 3.06 | 3.07 | ||||||||||
3.06 | 3.08 | 3.08 | 3.08 | ||||||||||
110 °C | CCS (MPa) | 48.01 | 47.00 | 1.63 | 33.65 | 41.61 | 7.45 | 49.00 | 56.68 | 7.49 | 67.75 | 63.13 | 5.49 |
47.87 | 42.77 | 57.07 | 64.57 | ||||||||||
45.12 | 48.41 | 63.96 | 57.06 | ||||||||||
Density (kg/m3) | 3.01 | 3.05 | 0.04 | 3.05 | 3.04 | 0.01 | 3.03 | 3.04 | 0.02 | 3.01 | 3.02 | 0.01 | |
3.08 | 3.03 | 3.02 | 3.02 | ||||||||||
3.06 | 3.03 | 3.06 | 3.02 | ||||||||||
1600 °C | CCS (MPa) | 141.98 | 180.99 | 38.40 | 111.69 | 157.02 | 40.34 | 123.09 | 167.13 | 38.32 | 152.59 | 171.94 | 43.40 |
218.74 | 170.40 | 185.47 | 141.58 | ||||||||||
182.26 | 188.98 | 192.84 | 221.65 | ||||||||||
Density (kg/m3) | 3.11 | 3.15 | 0.04 | 3.12 | 3.15 | 0.03 | 3.11 | 3.14 | 0.04 | 3.09 | 3.12 | 0.04 | |
3.19 | 3.16 | 3.12 | 3.11 | ||||||||||
3.14 | 3.18 | 3.18 | 3.17 | ||||||||||
PLC (%) | −1.43 | −1.30 | 0.13 | −1.04 | −1.50 | 0.40 | −1.31 | −1.43 | 0.10 | −1.33 | −1.45 | 0.23 | |
−1.30 | −1.77 | −1.50 | −1.31 | ||||||||||
−1.17 | −1.69 | −1.47 | −1.71 | ||||||||||
Weight loss (%) | 0.30 | 0.30 | 0.00 | 0.20 | 0.27 | 0.06 | 0.40 | 0.33 | 0.06 | 0.30 | 0.37 | 0.06 | |
0.30 | 0.30 | 0.30 | 0.40 | ||||||||||
0.30 | 0.30 | 0.30 | 0.40 |
0 wt.% CAC | 1.5 wt.% CAC | ||||||
---|---|---|---|---|---|---|---|
T (°C) | Property | Avg. | St. Dev. | Avg. | St. Dev. | Mean Difference | p-Value |
20 °C | CCS (MPa) | 22.08 | 8.3 | 22.72 | 9.04 | 0.64 | 0.09 |
Density (kg/m3) | 3.10 | 0.04 | 3.08 | 0.03 | 0.02 | 0.25 | |
110 °C | CCS (MPa) | 47.00 | 1.63 | 41.61 | 7.45 | 5.39 | 0.01 |
Density (kg/m3) | 3.05 | 0.04 | 3.04 | 0.01 | 0.01 | 0.19 | |
1600 °C | CCS (MPa) | 180.99 | 38.40 | 157.02 | 40.34 | 23.97 | 0.80 |
Density (kg/m3) | 3.15 | 0.04 | 3.15 | 0.03 | 0.00 | 0.52 | |
PLC (%) | −1.30 | 0.13 | −1.5 | 0.40 | 0.20 | 0.37 | |
Weight loss (%) | 0.30 | 0.00 | 0.27 | 0.06 | 0.03 | 0.12 |
Spectrum (wt.%) | 5 | 6 | 7 | 85 | 86 | 87 | 88 |
---|---|---|---|---|---|---|---|
O | 46.07 | 44.21 | 45.57 | 44.92 | 45.21 | 45.19 | 45.27 |
Al | 53.93 | 29.82 | 21.14 | 16.29 | 16.64 | 16.69 | 54.73 |
Si | 19.89 | 23.9 | 21.57 | 21.23 | 20.91 | ||
Ca | 0.49 | 0.72 | 9.26 | 8.85 | 9.16 | ||
Na | 3.38 | 4.71 | 4.28 | 4.28 | 4.3 | ||
Mg | 1.86 | 3.47 | 3.44 | 3.41 | 3.51 | ||
Expected phase 1 | Corundum | Mullite | Mullite | Anorthite | Anorthite | Anorthite | Corundum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piippo, A.; Ruotanen, K.; Visuri, V.-V.; Poutiainen, N.; Heikkinen, E.-P. Experimental Study on the Effect of Calcium Aluminate Cement Addition on the Drying and Physical Properties of Refractory Castables Containing Colloidal Silica. Materials 2024, 17, 5308. https://doi.org/10.3390/ma17215308
Piippo A, Ruotanen K, Visuri V-V, Poutiainen N, Heikkinen E-P. Experimental Study on the Effect of Calcium Aluminate Cement Addition on the Drying and Physical Properties of Refractory Castables Containing Colloidal Silica. Materials. 2024; 17(21):5308. https://doi.org/10.3390/ma17215308
Chicago/Turabian StylePiippo, Antti, Kyösti Ruotanen, Ville-Valtteri Visuri, Niko Poutiainen, and Eetu-Pekka Heikkinen. 2024. "Experimental Study on the Effect of Calcium Aluminate Cement Addition on the Drying and Physical Properties of Refractory Castables Containing Colloidal Silica" Materials 17, no. 21: 5308. https://doi.org/10.3390/ma17215308
APA StylePiippo, A., Ruotanen, K., Visuri, V.-V., Poutiainen, N., & Heikkinen, E.-P. (2024). Experimental Study on the Effect of Calcium Aluminate Cement Addition on the Drying and Physical Properties of Refractory Castables Containing Colloidal Silica. Materials, 17(21), 5308. https://doi.org/10.3390/ma17215308