The Input of Nanoclays to the Synergistic Flammability Reduction in Flexible Foamed Polyurethane/Ground Tire Rubber Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Composite Foams
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Brainy Insights. Polymer Foam Market Size by Type (Melamine Foam, Polyurethane Foam, Polystyrene Foam, PVC Foam, Phenolic Foam, Polyolefin Foam and Others), Application (Automotive, Marine, Packaging, Building & Construction, Furniture & Bedding, Rail, Wind and Others), Regions, Global Industry Analysis, Share, Growth, Trends, and Forecast 2023 to 2032. Available online: https://www.thebrainyinsights.com/report/polymer-foam-market-13615?srsltid=AfmBOopwv7iqn-9k4jEflbkZDFyD_wwQsRTwUpa0BBbETMFHWSc8tCqH (accessed on 28 October 2024).
- Precedence Research Pvt. Ltd. Polymer Foams Market Size, Share, and Trends 2024 to 2034. Available online: https://www.precedenceresearch.com/polymer-foam-market (accessed on 28 October 2024).
- Grand View Research, Inc. Polymer Foam Market Size, Share & Trends Analysis Report By Type (PC, PC/ABS, PET, PS, PP, ABS), By Application (Packaging, Building & Construction, Furniture & Bedding, Automotive, Rail), By Region, and Segment Forecasts, 2024–2030. Available online: https://www.grandviewresearch.com/industry-analysis/polymer-foam-market (accessed on 28 October 2024).
- Research and Markets. Global Polymer Foam Market by Type (Melamine, Phenolic, Polyolefin), End Use (Automotive, Building & Construction, Footwear)—Forecast 2024–2030. Available online: https://www.researchandmarkets.com/report/polymer-foam?srsltid=AfmBOop4GtUzG3PRGm4AXW3H1WTz9qoaTp2VZPBkSEIvU_RIPvLGtldA (accessed on 28 October 2024).
- Gutiérrez-González, S.; Gadea, J.; Rodríguez, A.; Junco, C.; Calderón, V. Lightweight Plaster Materials with Enhanced Thermal Properties Made with Polyurethane Foam Wastes. Constr. Build. Mater. 2012, 28, 653–658. [Google Scholar] [CrossRef]
- Tiuc, A.E.; Nemeş, O.; Vermeşan, H.; Toma, A.C. New Sound Absorbent Composite Materials Based on Sawdust and Polyurethane Foam. Compos. B Eng. 2019, 165, 120–130. [Google Scholar] [CrossRef]
- Hýsek, Š.; Neuberger, P.; Sikora, A.; Schönfelder, O.; Ditommaso, G. Waste Utilization: Insulation Panel from Recycled Polyurethane Particles and Wheat Husks. Materials 2019, 12, 3075. [Google Scholar] [CrossRef] [PubMed]
- Członka, S.; Bertino, M.F.; Strzelec, K.; Strąkowska, A.; Masłowski, M. Rigid Polyurethane Foams Reinforced with Solid Waste Generated in Leather Industry. Polym. Test. 2018, 69, 225–237. [Google Scholar] [CrossRef]
- Barczewski, M.; Kurańska, M.; Sałasińska, K.; Michałowski, S.; Prociak, A.; Uram, K.; Lewandowski, K. Rigid Polyurethane Foams Modified with Thermoset Polyester-Glass Fiber Composite Waste. Polym. Test. 2020, 81, 106190. [Google Scholar] [CrossRef]
- Smoleń, J.; Olszowska, K.; Godzierz, M. Composites of Rigid Polyurethane Foam and Shredded Car Window Glass Particles—Structure and Mechanical Properties. Compos. Theory Pract. 2021, 21, 135–140. [Google Scholar]
- Vahabi, H.; Rastin, H.; Movahedifar, E.; Antoun, K.; Brosse, N.; Saeb, M.R. Flame Retardancy of Bio-Based Polyurethanes: Opportunities and Challenges. Polymers 2020, 12, 1234. [Google Scholar] [CrossRef]
- Bhoyate, S.; Ionescu, M.; Kahol, P.K.; Gupta, R.K. Sustainable Flame-Retardant Polyurethanes Using Renewable Resources. Ind. Crop. Prod. 2018, 123, 480–488. [Google Scholar] [CrossRef]
- Yadav, A.; de Souza, F.M.; Dawsey, T.; Gupta, R.K. Recent Advancements in Flame-Retardant Polyurethane Foams: A Review. Ind. Eng. Chem. Res. 2022, 61, 15046–15065. [Google Scholar] [CrossRef]
- Lyon, R.E.; Takemori, M.T.; Safronava, N.; Stoliarov, S.I.; Walters, R.N. A Molecular Basis for Polymer Flammability. Polym. (Guildf) 2009, 50, 2608–2617. [Google Scholar] [CrossRef]
- Carvel, R.; Steinhaus, T.; Rein, G.; Torero, J.L. Determination of the Flammability Properties of Polymeric Materials: A Novel Method. Polym. Degrad. Stab. 2011, 96, 314–319. [Google Scholar] [CrossRef]
- Liu, M.; Peng, B.; Su, G.; Fang, M. Reactive Flame Retardants: Are They Safer Replacements? Environ. Sci. Technol. 2021, 55, 14477–14479. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jia, Z.; Luo, Y.; Jia, D.; Li, B. Environmentally Friendly Flame-Retardant and Its Application in Rigid Polyurethane Foam. Int. J. Polym. Sci. 2014, 2014, 263716. [Google Scholar] [CrossRef]
- Lv, Y.F.; Thomas, W.; Chalk, R.; Singamneni, S. Flame Retardant Polymeric Materials for Additive Manufacturing. Mater. Today Proc. 2020, 33, 5720–5724. [Google Scholar] [CrossRef]
- Lounis, M.; Leconte, S.; Rousselle, C.; Belzunces, L.P.; Desauziers, V.; Lopez-Cuesta, J.-M.; Julien, J.M.; Guenot, D.; Bourgeois, D. Fireproofing of Domestic Upholstered Furniture: Migration of Flame Retardants and Potential Risks. J. Hazard. Mater. 2019, 366, 556–562. [Google Scholar] [CrossRef]
- Rauert, C.; Lazarov, B.; Harrad, S.; Covaci, A.; Stranger, M. A Review of Chamber Experiments for Determining Specific Emission Rates and Investigating Migration Pathways of Flame Retardants. Atmos Environ. 2014, 82, 44–55. [Google Scholar] [CrossRef]
- Rao, W.-H.; Liao, W.; Wang, H.; Zhao, H.-B.; Wang, Y.-Z. Flame-Retardant and Smoke-Suppressant Flexible Polyurethane Foams Based on Reactive Phosphorus-Containing Polyol and Expandable Graphite. J. Hazard. Mater. 2018, 360, 651–660. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, S.; Zhang, Q.; Lu, G.-P.; Lin, Y. Tannic Acid as Cross-Linker and Flame Retardant for Preparation of Flame-Retardant Polyurethane Elastomers. React. Funct. Polym. 2022, 181, 105454. [Google Scholar] [CrossRef]
- Wang, M.; Yin, G.-Z.; Yang, Y.; Fu, W.; Díaz Palencia, J.L.; Zhao, J.; Wang, N.; Jiang, Y.; Wang, D.-Y. Bio-Based Flame Retardants to Polymers: A Review. Adv. Ind. Eng. Polym. Res. 2023, 6, 132–155. [Google Scholar] [CrossRef]
- He, W.; Song, P.; Yu, B.; Fang, Z.; Wang, H. Flame Retardant Polymeric Nanocomposites through the Combination of Nanomaterials and Conventional Flame Retardants. Prog. Mater. Sci. 2020, 114, 100687. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, H.; Wang, Y. Advanced Flame-Retardant Methods for Polymeric Materials. Adv. Mater. 2022, 34, 100687. [Google Scholar] [CrossRef] [PubMed]
- Taib, M.N.A.M.; Antov, P.; Savov, V.; Fatriasari, W.; Madyaratri, E.W.; Wirawan, R.; Osvaldová, L.M.; Hua, L.S.; Ghani, M.A.A.; Al Edrus, S.S.A.O.; et al. Current Progress of Biopolymer-Based Flame Retardant. Polym. Degrad. Stab. 2022, 205, 110153. [Google Scholar] [CrossRef]
- Konig, A.; Fehrenbacher, U.; Hirth, T.; Kroke, E. Flexible Polyurethane Foam with the Flame-Retardant Melamine. J. Cell. Plast. 2008, 44, 469–480. [Google Scholar] [CrossRef]
- van der Veen, I.; de Boer, J. Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis. Chemosphere 2012, 88, 1119–1153. [Google Scholar] [CrossRef]
- Xu, W.; Wang, G.; Zheng, X. Research on Highly Flame-Retardant Rigid PU Foams by Combination of Nanostructured Additives and Phosphorus Flame Retardants. Polym. Degrad. Stab. 2015, 111, 142–150. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, D.; Xu, M.; Li, B. Synthesis of a Novel Phosphorus and Nitrogen-Containing Flame Retardant and Its Application in Rigid Polyurethane Foam with Expandable Graphite. Polym. Degrad. Stab. 2020, 173, 109077. [Google Scholar] [CrossRef]
- Liu, X.; Salmeia, K.A.; Rentsch, D.; Hao, J.; Gaan, S. Thermal Decomposition and Flammability of Rigid PU Foams Containing Some DOPO Derivatives and Other Phosphorus Compounds. J. Anal. Appl. Pyrolysis 2017, 124, 219–229. [Google Scholar] [CrossRef]
- Li, J.; Mo, X.; Li, Y.; Zou, H.; Liang, M.; Chen, Y. Influence of Expandable Graphite Particle Size on the Synergy Flame Retardant Property between Expandable Graphite and Ammonium Polyphosphate in Semi-Rigid Polyurethane Foam. Polym. Bull. 2018, 75, 5287–5304. [Google Scholar] [CrossRef]
- Modesti, M.; Lorenzetti, A.; Simioni, F.; Camino, G. Expandable Graphite as an Intumescent Flame Retardant in Polyisocyanurate–Polyurethane Foams. Polym. Degrad. Stab. 2002, 77, 195–202. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Schartel, B. It Takes Two to Tango: Synergistic Expandable Graphite–Phosphorus Flame Retardant Combinations in Polyurethane Foams. Polymers 2022, 14, 2562. [Google Scholar] [CrossRef]
- Wang, S.; Qian, L.; Xin, F. The Synergistic Flame-retardant Behaviors of Pentaerythritol Phosphate and Expandable Graphite in Rigid Polyurethane Foams. Polym. Compos. 2018, 39, 329–336. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Dong, Q.; Yuan, W.; Liu, P.; Ding, Y.; Zhang, S.; Yang, M.; Zheng, G. Expandable Graphite Encapsulated by Magnesium Hydroxide Nanosheets as an Intumescent Flame Retardant for Rigid Polyurethane Foams. J. Appl. Polym. Sci. 2018, 135, 46749. [Google Scholar] [CrossRef]
- Yin, S.; Ren, X.; Lian, P.; Zhu, Y.; Mei, Y. Synergistic Effects of Black Phosphorus/Boron Nitride Nanosheets on Enhancing the Flame-Retardant Properties of Waterborne Polyurethane and Its Flame-Retardant Mechanism. Polymers 2020, 12, 1487. [Google Scholar] [CrossRef]
- Shan, G.; Jin, W.; Chen, H.; Zhao, M.; Surampalli, R.; Ramakrishnan, A.; Zhang, T.; Tyagi, R.D. Flame-Retardant Polymer Nanocomposites and Their Heat-Release Rates. J. Hazard. Toxic. Radioact. Waste 2015, 19, 04015006. [Google Scholar] [CrossRef]
- Vahabi, H.; Shabanian, M.; Aryanasab, F.; Mangin, R.; Laoutid, F.; Saeb, M.R. Inclusion of Modified Lignocellulose and Nano-Hydroxyapatite in Development of New Bio-Based Adjuvant Flame Retardant for Poly(Lactic Acid). Thermochim. Acta 2018, 666, 51–59. [Google Scholar] [CrossRef]
- Yang, H.; Yu, B.; Song, P.; Maluk, C.; Wang, H. Surface-Coating Engineering for Flame Retardant Flexible Polyurethane Foams: A Critical Review. Compos. B Eng. 2019, 176, 107185. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, S.; Liang, R.; Liao, Z.; You, G. A Green Highly-Effective Surface Flame-Retardant Strategy for Rigid Polyurethane Foam: Transforming UV-Cured Coating into Intumescent Self-Extinguishing Layer. Compos. Part. A Appl. Sci. Manuf. 2019, 125, 105534. [Google Scholar] [CrossRef]
- Kurańska, M.; Beneš, H.; Sałasińska, K.; Prociak, A.; Malewska, E.; Polaczek, K. Development and Characterization of “Green Open-Cell Polyurethane Foams” with Reduced Flammability. Materials 2020, 13, 5459. [Google Scholar] [CrossRef]
- Lee, P.S.; Jung, S.M. Flame Retardancy of Polyurethane Foams Prepared from Green Polyols with Flame Retardants. J. Appl. Polym. Sci. 2022, 139, 52010. [Google Scholar] [CrossRef]
- Gürkan, E.H.; Yaman, B. Comparative Evaluation of Flame Retardant Performance in Rigid Polyurethane Foams: TCPP, TDCP MP, and ATH as Promising Additives. J. Taibah Univ. Sci. 2023, 17, 2233757. [Google Scholar] [CrossRef]
- Thirumal, M.; Khastgir, D.; Singha, N.K.; Manjunath, B.S.; Naik, Y.P. Effect of Expandable Graphite on the Properties of Intumescent Flame-retardant Polyurethane Foam. J. Appl. Polym. Sci. 2008, 110, 2586–2594. [Google Scholar] [CrossRef]
- Modesti, M.; Lorenzetti, A. Flame Retardancy of Polyisocyanurate–Polyurethane Foams: Use of Different Charring Agents. Polym. Degrad. Stab. 2002, 78, 341–347. [Google Scholar] [CrossRef]
- Modesti, M.; Lorenzetti, A.; Simioni, F.; Checchin, M. Influence of Different Flame Retardants on Fire Behaviour of Modified PIR/PUR Polymers. Polym. Degrad. Stab. 2001, 74, 475–479. [Google Scholar] [CrossRef]
- Tang, G.; Zhou, L.; Zhang, P.; Han, Z.; Chen, D.; Liu, X.; Zhou, Z. Effect of Aluminum Diethylphosphinate on Flame Retardant and Thermal Properties of Rigid Polyurethane Foam Composites. J. Therm. Anal. Calorim. 2020, 140, 625–636. [Google Scholar] [CrossRef]
- Acuña, P.; Li, Z.; Santiago-Calvo, M.; Villafañe, F.; Rodríguez-Perez, M.; Wang, D.-Y. Influence of the Characteristics of Expandable Graphite on the Morphology, Thermal Properties, Fire Behaviour and Compression Performance of a Rigid Polyurethane Foam. Polymers 2019, 11, 168. [Google Scholar] [CrossRef]
- Kosmela, P.; Olszewski, A.; Barczewski, M.; Piasecki, A.; Hejna, A. The Impact of Hybrid Flame Retardant Compositions on the Performance of Foamed Flexible Polyurethane/Ground Tire Rubber Composites. J. Mater. Eng. Perform. 2024. [Google Scholar] [CrossRef]
- Kosmela, P.; Sałasińska, K.; Kowalkowska-Zedler, D.; Barczewski, M.; Piasecki, A.; Saeb, M.R.; Hejna, A. Fire-Retardant Flexible Foamed Polyurethane (PU)-Based Composites: Armed and Charmed Ground Tire Rubber (GTR) Particles. Polymers 2024, 16, 656. [Google Scholar] [CrossRef]
- Ryszkowska, J.; Leszczynska, M.; Auguscik, M.; Bryskiewicz, A.; Polka, M.; Kukfisz, B.; Wierzbicki, L.; Aleksandrowicz, J.; Szczepkowski, L.; Oliwa, R. Cores of Composite Structures Made of Semi-Rigid Foams for Use as Protecting Shields for Firefighters. Polimery 2018, 63, 125–133. [Google Scholar] [CrossRef]
- Pang, X.; Xin, Y.; Shi, X.; Xu, J. Effect of Different Size-modified Expandable Graphite and Ammonium Polyphosphate on the Flame Retardancy, Thermal Stability, Physical, and Mechanical Properties of Rigid Polyurethane Foam. Polym. Eng. Sci. 2019, 59, 1381–1394. [Google Scholar] [CrossRef]
- Xi, W.; Qian, L.; Chen, Y.; Wang, J.; Liu, X. Addition Flame-Retardant Behaviors of Expandable Graphite and [Bis(2-Hydroxyethyl)Amino]-Methyl-Phosphonic Acid Dimethyl Ester in Rigid Polyurethane Foams. Polym. Degrad. Stab. 2015, 122, 36–43. [Google Scholar] [CrossRef]
- Feng, F.; Qian, L. The Flame Retardant Behaviors and Synergistic Effect of Expandable Graphite and Dimethyl Methylphosphonate in Rigid Polyurethane Foams. Polym. Compos. 2014, 35, 301–309. [Google Scholar] [CrossRef]
- Hejna, A. Clays as Inhibitors of Polyurethane Foams’ Flammability. Materials 2021, 14, 4826. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Zhu, X.; Chen, F.; Chen, S.; Liu, H. Flame-Retardant System for Rigid Polyurethane Foams Based on Diethyl Bis(2-Hydroxyethyl)Aminomethylphosphonate and in-Situ Exfoliated Clay. Polym. Degrad. Stab. 2020, 177, 109178. [Google Scholar] [CrossRef]
- Piszczyk, Ł.; Hejna, A.; Formela, K.; Danowska, M.; Strankowski, M. Morphology, Mechanical and Thermal Properties of Flexible Polyurethane Foams Modified with Layered Aluminosilicates. Polim./Polym. 2014, 59, 783–791. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Ma, C.; Zhou, F.; Hu, Y.; Schartel, B. A Liquid Phosphorous Flame Retardant Combined with Expandable Graphite or Melamine in Flexible Polyurethane Foam. Polym. Adv. Technol. 2022, 33, 326–339. [Google Scholar] [CrossRef]
- Wang, C.; Ge, F.; Sun, J.; Cai, Z. Effects of Expandable Graphite and Dimethyl Methylphosphonate on Mechanical, Thermal, and Flame-retardant Properties of Flexible Polyurethane Foams. J. Appl. Polym. Sci. 2013, 130, 916–926. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Zhu, M. Flame Retardant, Mechanical and Thermal Insulating Properties of Rigid Polyurethane Foam Modified by Nano Zirconium Amino-Tris-(Methylenephosphonate) and Expandable Graphite. Polym. Degrad. Stab. 2019, 170, 108997. [Google Scholar] [CrossRef]
- ISO 5660-1:2015; Heat Release, Smoke Production and Mass Loss Rate Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement). International Organization for Standardization: Geneva, Switzerland, 2015.
- Hirschler, M.M. Use of Heat Release Rate to Predict Whether Individual Furnishings Would Cause Self Propagating Fires. Fire Saf. J. 1999, 32, 273–296. [Google Scholar] [CrossRef]
- Vahabi, H.; Kandola, B.; Saeb, M. Flame Retardancy Index for Thermoplastic Composites. Polymers 2019, 11, 407. [Google Scholar] [CrossRef]
- Zhang, M.-M.; Wang, Y.; Li, M.; Gou, F.-H.; Jiang, L.; Sun, J.-H. Development of Ignition Time and Mass Loss Rate Prediction Models for Rigid Polyurethane Foam with Multi-Step Thermal Degradation Under Various External Heat Flux Conditions. Fire Technol. 2022, 58, 615–639. [Google Scholar] [CrossRef]
- Babrauskas, V.; Peacock, R.D. Heat Release Rate: The Single Most Important Variable in Fire Hazard. Fire Saf. J. 1992, 18, 255–272. [Google Scholar] [CrossRef]
- Hirschler, M.M. Flame Retardants and Heat Release: Review of Data on Individual Polymers. Fire Mater. 2015, 39, 232–258. [Google Scholar] [CrossRef]
- Lorenzetti, A.; Dittrich, B.; Schartel, B.; Roso, M.; Modesti, M. Expandable Graphite in Polyurethane Foams: The Effect of Expansion Volume and Intercalants on Flame Retardancy. J. Appl. Polym. Sci. 2017, 134, 45173. [Google Scholar] [CrossRef]
- Mazela, B.; Batista, A.; Grześkowiak, W. Expandable Graphite as a Fire Retardant for Cellulosic Materials—A Review. Forests 2020, 11, 755. [Google Scholar] [CrossRef]
- Wu, T.-C.; Tsai, K.-C.; Lu, M.-C.; Kuan, H.-C.; Chen, C.-H.; Kuan, C.-F.; Chiu, S.-L.; Hsu, S.-W.; Chiang, C.-L. Synthesis, Characterization, and Properties of Silane-Functionalized Expandable Graphite Composites. J. Compos. Mater. 2012, 46, 1483–1496. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Zhang, G.; Li, H.; Sun, J.; Gu, X.; Zhang, S. Burning Behavior Analysis of Polypropylene Composite Containing Poly-Siloxane Encapsulated Expandable Graphite. Polym. Degrad. Stab. 2022, 202, 110006. [Google Scholar] [CrossRef]
- EN 45545-2; Railway Applications—Fire Protection on Railway Vehicles—Part 2: Requirements for Fire Behaviour of Materials and Components. Deutsches Institut für Normung DIN: Berlin, Germany, 2023.
- Schartel, B.; Hull, T.R. Development of Fire-Retarded Materials—Interpretation of Cone Calorimeter Data. Fire Mater. 2007, 31, 327–354. [Google Scholar] [CrossRef]
- Sacristán, M.; Hull, T.R.; Stec, A.A.; Ronda, J.C.; Galià, M.; Cádiz, V. Cone Calorimetry Studies of Fire Retardant Soybean-Oil-Based Copolymers Containing Silicon or Boron: Comparison of Additive and Reactive Approaches. Polym. Degrad. Stab. 2010, 95, 1269–1274. [Google Scholar] [CrossRef]
- Hshieh, F.; Hirsch, D.B.; Beeson, H.D. Predicting Heats of Combustion of Polymers Using an Empirical Approach. Fire Mater. 2003, 27, 9–17. [Google Scholar] [CrossRef]
- Hejna, A.; Kosmela, P.; Olszewski, A.; Barczewski, M. Foamed Flexible Polyurethane/Ground Tire Rubber Composites Modified with Hybrid Flame Retardant Compositions. In Proceedings of the 8th International Seminar on Modern Polymeric Materials for Environmental Applications, Kraków, Poland, 17–19 May 2023. [Google Scholar]
- Thi, N.H.; Pham, D.L.; Hanh, N.T.; Oanh, H.T.; Yen Duong, T.H.; Nguyen, T.N.; Tuyen, N.D.; Phan, D.L.; Trinh, H.T.; Nguyen, H.T.; et al. Influence of Organoclay on the Flame Retardancy and Thermal Insulation Property of Expandable Graphite/Polyurethane Foam. J. Chem. 2019, 2019, 4794106. [Google Scholar] [CrossRef]
- Tang, G.; Jiang, H.; Yang, Y.; Chen, D.; Liu, C.; Zhang, P.; Zhou, L.; Huang, X.; Zhang, H.; Liu, X. Preparation of Melamine–Formaldehyde Resin-Microencapsulated Ammonium Polyphosphate and Its Application in Flame Retardant Rigid Polyurethane Foam Composites. J. Polym. Res. 2020, 27, 375. [Google Scholar] [CrossRef]
- Gao, M.; Wu, W.; Liu, S.; Wang, Y.; Shen, T. Thermal Degradation and Flame Retardancy of Rigid Polyurethane Foams Containing a Novel Intumescent Flame Retardant. J. Therm. Anal. Calorim. 2014, 117, 1419–1425. [Google Scholar] [CrossRef]
- Acuña, P.; Santiago-Calvo, M.; Villafañe, F.; Rodríguez-Perez, M.A.; Rosas, J.; Wang, D. Impact of Expandable Graphite on Flame Retardancy and Mechanical Properties of Rigid Polyurethane Foam. Polym. Compos. 2019, 40, E1705–E1715. [Google Scholar] [CrossRef]
- Okrasa, M.; Leszczyńska, M.; Sałasińska, K.; Szczepkowski, L.; Kozikowski, P.; Nowak, A.; Szulc, J.; Adamus-Włodarczyk, A.; Gloc, M.; Majchrzycka, K.; et al. Viscoelastic Polyurethane Foams with Reduced Flammability and Cytotoxicity. Materials 2021, 15, 151. [Google Scholar] [CrossRef]
- Hirschler, M.M. Poly(Vinyl Chloride) and Its Fire Properties. Fire Mater. 2017, 41, 993–1006. [Google Scholar] [CrossRef]
Component | Trade Name | Producer | Component | Trade Name | Producer |
---|---|---|---|---|---|
Polyols | Rokopol® F3000 | PCC Group (Brzeg Dolny, Poland) | Blowing agent | Distilled water | --- |
Rokopol®V700 | PCC Group (Brzeg Dolny, Poland) | Ground tire rubber (GTR) | --- | Recykl S.A. (Śrem, Poland) | |
Glycerol | Sigma Aldrich (Poznań, Poland) | Flame retardants | Roflam F6 | PCC Group (Brzeg Dolny, Poland) | |
Diisocyanate | SPECFLEX NF 434 | M. B. Market Ltd. (Baniocha, Poland) | Roflam B7 | PCC Group (Brzeg Dolny, Poland) | |
Catalysts | PC CAT® TKA30 | Performance Chemicals (Belvedere, UK) | Expandable graphite (EG) | Nordmann, Rassmann, GmbH (Hamburg, Germany) | |
Dabco33LV | Air Products (Allentown, PA, USA) | Nanoclays | Nanomer® I.44P (N1) | Nanocor, Inc. (Arlington Heights, IL, USA) | |
Dibutyltin dilaurate | Sigma Aldrich (Poznań, Poland) | Nanomer® I.31PS (N2) | Nanocor, Inc. (Arlington Heights, IL, USA) | ||
Nanomer® I.28E (N3) | Nanocor, Inc. (Arlington Heights, IL, USA) |
Sample | TTI, s | pHRR, kW/m2 | mHRR, kW/m2 | MARHE, kW/m2 | THR, MJ/m2 | EHC, MJ/kg | Residue, wt% | TSR, m2/m2 | SEA, m2/kg | COY, kg/kg | CO2Y, kg/kg | FPI | FRI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F65EG15N1 | 5 (0) | 141 (39) | 74 (11) | 141 (34) | 125 (16) | 23 (2) | 43.9 (2.0) | 306 (10) | 56 (5) | 0.021 (0.008) | 1.55 (0.11) | 0.0356 | 2.74 |
F65EG15N2 | 4 (0) | 163 (10) | 72 (1) | 154 (15) | 133 (0) | 24 (0) | 41.4 (0.2) | 351 (32) | 51 (6) | 0.043 (0.012) | 1.58 (0.04) | 0.0246 | 1.77 |
F65EG15N3 | 5 (0) | 139 (1) | 94 (2) | 126 (22) | 156 (7) | 26 (1) | 37.1 (1.6) | 608 (25) | 102 (2) | 0.037 (0.010) | 1.63 (0.01) | 0.0358 | 2.21 |
F610EG10N1 | 5 (0) | 189 (19) | 128 (1) | 170 (11) | 164 (3) | 23 (1) | 25.8 (0.1) | 1965 (142) | 276 (26) | 0.029 (0.006) | 1.53 (0.01) | 0.0265 | 1.55 |
F610EG10N2 | 4 (0) | 179 (41) | 93 (1) | 162 (32) | 164 (2) | 23 (0) | 27.0 (1.0) | 2016 (125) | 286 (15) | 0.016 (0.010) | 1.53 (0.00) | 0.0224 | 1.31 |
F610EG10N3 | 4 (1) | 165 (23) | 96 (6) | 157 (2) | 169 (4) | 24 (0) | 27.4 (3.7) | 1651 (90) | 232 (19) | 0.032 (0.010) | 1.54 (0.01) | 0.0213 | 1.21 |
B75EG15N1 | 4 (1) | 125 (18) | 84 (6) | 116 (22) | 155 (6) | 25 (0) | 35.5 (2.8) | 768 (7) | 122 (3) | 0.029 (0.012) | 1.60 (0.05) | 0.0280 | 1.74 |
B75EG15N2 | 4 (1) | 129 (22) | 71 (7) | 129 (10) | 133 (10) | 23 (1) | 40.7 (3.4) | 482 (22) | 81 (10) | 0.022 (0.009) | 1.56 (0.04) | 0.0271 | 1.95 |
B75EG15N3 | 4 (1) | 169 (14) | 90 (8) | 143 (16) | 158 (9) | 25 (1) | 35.5 (1.0) | 897 (114) | 137 (21) | 0.047 (0.003) | 1.59 (0.04) | 0.0236 | 1.44 |
B710EG10N1 | 5 (1) | 178 (13) | 93 (3) | 175 (12) | 168 (8) | 24 (0) | 28.3 (2.3) | 1514 (91) | 213 (32) | 0.027 (0.011) | 1.56 (0.02) | 0.0281 | 1.61 |
B710EG10N2 | 6 (2) | 179 (15) | 102 (2) | 178 (16) | 164 (2) | 23 (1) | 27.4 (0.5) | 1829 (147) | 259 (15) | 0.024 (0.011) | 1.58 (0.01) | 0.0307 | 1.80 |
B710EG10N3 | 4 (0) | 182 (2) | 106 (0) | 171 (3) | 171 (7) | 25 (0) | 29.8 (1.3) | 1795 (85) | 264 (5) | 0.034 (0.007) | 1.54 (0.01) | 0.0220 | 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hejna, A.; Kosmela, P.; Olszewski, A.; Żukowska, W. The Input of Nanoclays to the Synergistic Flammability Reduction in Flexible Foamed Polyurethane/Ground Tire Rubber Composites. Materials 2024, 17, 5344. https://doi.org/10.3390/ma17215344
Hejna A, Kosmela P, Olszewski A, Żukowska W. The Input of Nanoclays to the Synergistic Flammability Reduction in Flexible Foamed Polyurethane/Ground Tire Rubber Composites. Materials. 2024; 17(21):5344. https://doi.org/10.3390/ma17215344
Chicago/Turabian StyleHejna, Aleksander, Paulina Kosmela, Adam Olszewski, and Wiktoria Żukowska. 2024. "The Input of Nanoclays to the Synergistic Flammability Reduction in Flexible Foamed Polyurethane/Ground Tire Rubber Composites" Materials 17, no. 21: 5344. https://doi.org/10.3390/ma17215344