Flammability and Thermoregulation Performance of Multilayer Protective Clothing Incorporated with Phase Change Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Fabrication of Multilayer Fabrics
2.2.2. Immobilization of PCM on the Fabric Surface
2.2.3. Characterization of the Material
Thermal Analysis
- IR Thermography
- Differential Scanning Calorimetry (DSC)
- Thermal Protective Performance (TPP) Device
- Vertical and Horizontal Flame Tests
- Steady-State (Convective and Radiant) Heat Resistance
Physical Parameters
Thermo–Physiological Comfort Properties
3. Results and Discussion
3.1. Physical Parameters of Multilayer Fabrics
3.2. Thermo–Physiological Comfort Properties of Multilayer Fabrics
3.3. Thermal Analysis
Flammability Tests of Multilayer Fabrics
3.4. Steady-State Heat Resistance
3.5. IR Thermography
3.6. Differential Scanning Calorimetry (DSC)
3.7. Thermal Protective Performance (TPP)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morris, C.E.; Chander, H. The impact of firefighter physical fitness on job performance: A review of the factors that influence fire suppression safety and success. Safety 2018, 4, 60. [Google Scholar] [CrossRef]
- Phelps, H.; Sidhu, H. A mathematical model for heat transfer in fire fighting suits containing phase change materials. Fire Saf. J. 2015, 74, 43–47. [Google Scholar] [CrossRef]
- Mohammed Ali, A.H.; Yu, W. Thermal Protective Performance of Multilayer Fire Fighting Fabric. Int. J. Cloth. Sci. Technol. 2014, 26, 235–246. [Google Scholar] [CrossRef]
- Atalay, O.; Bahadir, S.K.; Kalaoglu, F. An Analysis on the Moisture and Thermal Protective Performance of Firefighter Clothing Based on Different Layer Combinations and Effect of Washing on Heat Protection and Vapour Transfer Performance. Adv. Mater. Sci. Eng. 2015, 2015, 40394. [Google Scholar] [CrossRef]
- Barker, R.L.; Yener, M. Evaluating the Resistance of Some Protective Fabrics to Molten Iron. Text. Res. J. 2016, 51, 533–541. [Google Scholar] [CrossRef]
- Lei, Z. Review of the study of relation between the thermal protection performance and the thermal comfort performance of firefighters’ clothing. J. Eng. Fiber. Fabr. 2022, 17, 15589250211068032. [Google Scholar] [CrossRef]
- Barr, D.; Gregson, W.; Reilly, T. The thermal ergonomics of firefighting reviewed. Appl. Ergon. 2010, 41, 161–172. [Google Scholar] [CrossRef]
- Sati, R.; Crown, E.M.; Gonzalez, J.; Ackerman, M.; Dale, D. Protection from steam at high pressures: Development of a test device and protocol. Int. J. Occup. Saf. Ergon. 2008, 14, 29–41. [Google Scholar] [CrossRef]
- What Kind of Gear Do Firefighters Wear? Available online: https://work.chron.com/kind-gear-firefighters-wear-9547.html (accessed on 21 October 2024).
- Fire Fighting Suit—Universal Fire Protection Co. Pvt Ltd. Available online: https://universalfireprotection.com.pk/fire-fighting-suit/ (accessed on 21 October 2024).
- How Your Turnout Gear Works—The Scene|A head-to-Toe Safety Blog from the Experts at MSA Fire. Available online: https://blog.msafire.com/how-your-turnout-gear-works/ (accessed on 21 October 2024).
- The Firefighter Suit: Understanding the Layers of Protection. Available online: https://eu.tencatefabrics.com/blog/layers-firefighter-suit (accessed on 21 October 2024).
- Peeling Back the Fire Suit ‘Onion’, Layer #3: The Thermal Barrier. Available online: https://eu.tencatefabrics.com/blog/fire-suit-layer-thermal-barrier (accessed on 21 October 2024).
- Nayak, R.; Houshyar, S.; Padhye, R. Recent trends and future scope in the protection and comfort of fire-fighters’ personal protective clothing. Fire Sci. Rev. 2014, 3, 4. [Google Scholar] [CrossRef]
- Eryuruk, S.H.; Gidik, H.; Koncar, V.; Kalaoglu, F.; Tao, X.; Saglam, Y. Heat and moisture transfer properties of a firefighter clothing with a new fire-resistant underwear. J. Ind. Text. 2022, 51, 4480S–4513S. [Google Scholar] [CrossRef]
- Tekstil, Z. Investigation of Flame Retardancy Effect of Licorice Root Extract on Cotton and Cotton-Polyester Blended Fabrics, Meyan Kökü Ekstraktının Pamuk ve Pamuk—Poliester Karışımlı Kumaşlarda Güç. Cukurova Univ. J. Fac. Eng. 2022, 37, 351–366. [Google Scholar] [CrossRef]
- Kim, H.A.; Kim, S.J. Flame-Retardant and Wear Comfort Properties of Modacrylic/FR-Rayon/Anti-static PET Blend Yarns and Their Woven Fabrics for Clothing. Fibers Polym. 2018, 19, 1869–1879. [Google Scholar] [CrossRef]
- Jin, L.; Hong, K.; Yoon, K. Effect of aerogel on thermal protective performance of firefighter clothing. J. Fiber Bioeng. Inform. 2013, 6, 315–324. [Google Scholar] [CrossRef]
- Mishra, R.; Militky, J.; Venkataraman, M. Nanoporous materials. In The Textile Institute Book Series, Nanotechnology in Textiles; Mishra, R., Militky, J., Eds.; Woodhead Publishing: New York, NY, USA, 2019; pp. 311–353. [Google Scholar] [CrossRef]
- Venkataraman, M.; Mishra, R.; Militky, J.; Xiong, X.; Marek, J.; Yao, J.; Zhu, G. Electrospun nanofibrous membranes embedded with aerogel for advanced thermal and transport properties. Polym. Adv. Technol. 2018, 29, 2583–2592. [Google Scholar] [CrossRef]
- Xiong, X.; Yang, T.; Kanai, H.; Militky, J. Thermal and compression characteristics of aerogel-encapsulated textiles. J. Ind. Text. 2018, 47, 1998–2013. [Google Scholar] [CrossRef]
- Meena, M.; Kerketta, A.; Tripathi, M.; Roy, P.; Jacob, J. Moisture barrier layer with supplemental chemical and biological protective functionality for firefighting clothing applications. J. Ind. Text. 2022, 51 (Suppl. S4), 6110S–6133S. [Google Scholar] [CrossRef]
- Zhao, M. The usage of phase change materials in fire fighter protective clothing: Its effect on thermal protection. IOP Conf. Ser. Mater. Sci. Eng. 2017, 274, 012136. [Google Scholar] [CrossRef]
- Malaquias, A.F.; Neves, S.F.; Campos, J.B. Incorporation of phase change materials in fire protective clothing considering the presence of water. Int. J. Therm. Sci. 2023, 183, 107870. [Google Scholar] [CrossRef]
- Renard, M.; Machnowski, W.; Puszkarz, A.K. Assessment of Thermal Performance of Phase-Change Material-Based Multilayer Protective Clothing Exposed to Contact and Radiant Heat. Appl. Sci. 2023, 13, 9447. [Google Scholar] [CrossRef]
- Atakan, R.; Bical, A.; Celebi, E.; Ozcan, G.; Soydan, N.; Sarac, A.S. Development of a flame retardant chemical for finishing of cotton, polyester, and CO/PET blends. J. Ind. Text. 2019, 49, 141–161. [Google Scholar] [CrossRef]
- Atakan, R.; Özcan, G.; Er, E.; Öztürk, T.; Kardaş, D.G. Flame retardancy and non-slip finish in one step process for co/PET fabrics. Tekst. Konfeksiyon 2019, 29, 50–57. [Google Scholar] [CrossRef]
- Eryuruk, S.H. Effect of Fabric Layers on Thermal Comfort Properties of Multilayered Thermal Protective Fabrics. Autex Res. J. 2019, 19, 271–278. [Google Scholar] [CrossRef]
- Hossain, M.T.; Shahid, M.A.; Ali, M.Y.; Saha, S.; Jamal, M.S.; Habib, A. Fabrications, Classifications, and Environmental Impact of PCM-Incorporated Textiles: Current State and Future Outlook. ACS Omega 2023, 8, 45164–45176. [Google Scholar] [CrossRef] [PubMed]
- Li, F.F.; Zheng, C.Q.; Qin, G.M.; Zhou, X.H. Research on thermal protective performance of thermal insulation and flame-retardant protective clothing. Adv. Mater. Res. 2013, 796, 607–612. [Google Scholar] [CrossRef]
- Latifi, S.; Boukhriss, A.; Saoiabi, S.; Saoiabi, A.; Gmouh, S. Flame retardant coating of textile fabrics based on ionic liquids with self-extinguishing, high thermal stability and mechanical properties. Polym. Bull. 2022, 80, 9253–9274. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Song, G.; Yang, H. Effects of microencapsulated phase change materials on the thermal behavior of multilayer thermal protective clothing. J. Text. Inst. 2021, 112, 1004–1013. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R.; Khan, A.; Chandan, V.; Muller, M.; Valasek, P. Flammability and comfort properties of blended knit fabrics made from inherently fire-resistant fibers to use for fire fighters. Heliyon 2023, 9, e13127. [Google Scholar] [CrossRef]
- Khan, A.A.; Jamshaid, H.; Mishra, R.K.; Chandan, V.; Kolář, V.; Jirků, P.; Müller, M.; Nazari, S.; Alexiou Ivanova, T.; Hussain, T. An Analysis of the Performance and Comfort Properties of Fire-Protective Material by Using Inherently Fire-Retardant Fibers and Knitting Structures. Materials 2023, 16, 7347. [Google Scholar] [CrossRef]
- Williams, M.E. Repair of deteriorated bridge substructures using carbon fiber-reinforced polymer (CFRP) composites. In Advanced Composites in Bridge Construction and Repair; Woodhead Publishing: Sawston, UK, 2014; pp. 265–286. [Google Scholar] [CrossRef]
- Infrared Thermography Explained|Reliable Plant. Available online: https://www.reliableplant.com/infrared-thermography-31572 (accessed on 23 October 2024).
- Differential Scanning Calorimetry (DSC) Analysis. Available online: https://www.intertek.com/analysis/dsc/ (accessed on 23 October 2024).
- ASTM D3418-15; Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2015.
- Song, G.; Mandal, S.; Rossi, R.M. Effects of various factors on performance of thermal protective clothing. In Thermal Protective Clothing for Firefighters; Woodhead Publishing Series in Textiles; Woodhead Publishing: Sawston, UK, 2017; pp. 163–182. [Google Scholar] [CrossRef]
- Thermal Protective Performance—Thermetrics Thermal Solutions. Available online: https://thermetrics.com/products/protective/tpp-htp-test-device/ (accessed on 23 October 2024).
- Kothari, V.K.; Chakraborty, S. Protective performance of thermal protective clothing assemblies exposed to different radiant heat fluxes. Fibers Polym. 2016, 17, 809–814. [Google Scholar] [CrossRef]
- Horrocks, A.R. Technical Fibres for Heat and Flame Protection, 2nd ed.; Woodhead Publishing: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- ASTM F2700-08; Standard Test Method for Unsteady-State Heat Transfer Evaluation of Flame-Resistant Materials for Clothing with Continuous Heating. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D6413/D6413M-15; Standard Test Method for Flame Resistance of Textiles (Vertical Test). ASTM International: West Conshohocken, PA, USA, 2015.
- ISO 6940:2004; Textile fabrics—Burning behaviour—Determination of Ease of Ignition of Vertically Oriented Specimens. ISO: Geneva, Switzerland, 2004.
- ASTM D4018/ISO17492; PPE Personal Protection Equipment Heat Thermal Resistance Protection Laboraotry Testing Machine. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D3776/D3776M-20; Standard Test Methods for Mass Per Unit Area (Weight) of Fabric. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D1777-96; Standard Test Method for Thickness of Textile Materials. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D737-18; Standard Test Method for Air Permeability of Textile Fabrics. ASTM International: West Conshohocken, PA, USA, 2023.
- AATCC Test Method 195-2011; Liquid Moisture Management Properties of Textile Fabrics. American Association of Textile Chemists and Colorists. Research Triangle Park: Durham, NC, USA, 2011.
- JIS L 1927:2020; Textiles—Measurement method of cool touch feeling property. Japanese Standards Association: Tokyo, Japan, 2020.
- Varshney, R.K.; Kothari, V.K.; Dhamija, S. A study on thermophysiological comfort properties of fabrics in relation to constituent fibre fineness and cross-sectional shapes. J. Text. Inst. 2010, 101, 495–505. [Google Scholar] [CrossRef]
- Sheraz, A.; Faheem, A.; Ali, A.; Abher, R.; Muhammad, M.; Niaz, A. Effect of Weave Structure on Thermo-Physiological Properties of Cotton Fabrics. Autex Res. J. 2015, 15, 30–34. [Google Scholar] [CrossRef]
- Hu, J.; Li, Y.; Yeung, K.W.; Wong, A.S.W.; Xu, W. Moisture Management Tester: A Method to Characterize Fabric Liquid Moisture Management Properties. Text. Res. J. 2016, 75, 57–62. [Google Scholar] [CrossRef]
- Motlogelwa, S. Comfort and Durability in High-Performance Clothing; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Yang, F. Fire-Retardant Carbon-Fiber-Reinforced Thermoset Composites; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Gracia, M.O.; Velazquez, L.M.; Mercado, A.M. Increasing the Burned Time and Mechanical Properties with New Mix As Flame Retardant Based in Hexametaphosphate of Sodium and Borax in Textile 100% Acrylic Fabrics. Adv. Mater. Phys. Chem. 2012, 2, 99–101. [Google Scholar] [CrossRef]
- Bajaj, P. Flame retardant materials. Bull. Mater. Sci. 1992, 15, 67–76. [Google Scholar] [CrossRef]
- Fei, B. High-Performance Fibers for Textiles; Elsevier Ltd.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Lu, J.; Ghodrat, M.; Escobedo-Diaz, J.P. Experimental Investigation of the Factors Affecting Performance of Firefighters’ Protective Clothing. In Characterization of Minerals, Metals, and Materials; Peng, Z., Ed.; TMS 2024. The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Jalil, J.M.; Mahdi, H.S.; Allawy, A.S. Cooling performance investigation of PCM integrated into heat sink with nano particles addition. J. Energy Storage 2022, 55, 105466. [Google Scholar] [CrossRef]
- Yin, C.; Fei, Z.X.; Sun, J.; Weng, L.; Wang, X.; Yang, K.K.; Shi, L.Y. High-enthalpy biphasic phase change organogels with shape memory function based on hydrophobic association and H-bonding interaction. Chem. Eng. J. 2023, 468, 143495. [Google Scholar] [CrossRef]
- Lan, T.-Y.; Mao, H.-I.; Chen, C.-W.; Lee, Y.-T.; Yang, Z.-Y.; Luo, J.-L.; Li, P.-R.; Rwei, S.-P. A Rapid Thermal Absorption Rate and High Latent Heat Enthalpy Phase Change Fiber Derived from Bio-Based Low Melting Point Copolyesters. Polymers 2022, 14, 3298. [Google Scholar] [CrossRef]
- Mandal, S.; Annaheim, S.; Camenzind, M.; Rossi, R.M. Characterization and modelling of thermal protective performance of fabrics under different levels of radiant-heat exposures. J. Ind. Text. 2019, 48, 1184–1205. [Google Scholar] [CrossRef]
Sample ID | Composition |
---|---|
S1 | Nomex + PTFE + Nomex with PCM |
S2 | Protex + PTFE + Protex with PCM |
S3 | 70/30 Nomex/Carbon + PTFE + 70/30 Nomex/Carbon with PCM |
S4 | 70/30 Nomex/Protex + PTFE + 70/30 Nomex/Protex with PCM |
SC | Control Sample/market sample |
Horizontal Flame Test | ||||||||
---|---|---|---|---|---|---|---|---|
ID | Weight Before (g) | Weight After (g) | Weight Loss (g) | After Flame (s) | After Glow (s) | Smoke | Char Length (mm) | Bead |
S1 | 16.02 ± 0.06 | 15.12 ± 0.06 | 0.90 ± 0.03 | 0 | 0 | ✔ | 0 | ✔ |
S2 | 15.53 ± 0.04 | 15.42 ± 0.04 | 0.11 ± 0.00 | 0 | 0 | ✔ | 0 | ✔ |
S3 | 13.92 ± 0.05 | 13.84 ± 0.04 | 0.08 ± 0.00 | 0 | 0 | ✔ | 0 | ✔ |
S4 | 15.41 ± 0.06 | 15.30 ± 0.05 | 0.11 ± 0.01 | 0 | 0 | ✔ | 0 | ✔ |
SC | 19.95 ± 0.07 | 18.90 ± 0.06 | 1.05 ± 0.04 | 0 | 0 | ✔ | 0 | ✔ |
Vertical Flame Test | ||||||||
ID | Weight Before (g) | Weight After (g) | Weight Loss (g) | After Flame (s) | After Glow (s) | Smoke | Char Length (mm) | Bead |
S1 | 16.02 ± 0.05 | 15.92 ± 0.03 | 0.10 ± 0.00 | 0 | 0 | ✔ | 15 ± 0.5 | ✔ |
S2 | 15.53 ± 0.05 | 14.40 ± 0.02 | 1.13 ± 0.05 | 0 | 0 | ✔ | 30 ± 0.8 | ✔ |
S3 | 13.92 ± 0.04 | 13.77 ± 0.05 | 0.15 ± 0.00 | 0 | 0 | ✔ | 22 ± 0.4 | ✔ |
S4 | 15.41 ± 0.05 | 15.26 ± 0.05 | 0.15 ± 0.00 | 0 | 0 | ✔ | 17 ± 0.6 | ✔ |
SC | 19.95 ± 0.04 | 19.86 ± 0.05 | 0.09 ± 0.00 | 0 | 0 | ✔ | 25 ± 0.7 | ✔ |
ID | Radiant Heat Time (min:s) | Radiant Heat Temp °C | Convective Heat Time (min:s) | Convective Heat Temp °C |
---|---|---|---|---|
S1 | 4:22 ± 0:05 | 15 ± 0.4 | 23:28 ± 0:03 | 15 ± 0.2 |
S2 | 8:10 ± 0:06 | 15 ± 0.4 | 12:19 ± 0:02 | 15 ± 0.4 |
S3 | 16:50 ± 0:21 | 15 ± 0.5 | 14:52 ± 0:03 | 15 ± 05 |
S4 | 3:01 ± 0:03 | 15 ± 0.3 | 10:33 ± 0:05 | 15 ± 0.4 |
SC | 4:45 ± 0:04 | 15 ± 0.5 | 16:38 ± 0:08 | 15 ± 0.1 |
ID | Thickness (mm) | Sample Weight (g) | HIT12/s | HIT24/s | TPP |
---|---|---|---|---|---|
S1 | 1.16 ± 0.06 | 12.89 ± 0.05 | 8.12 ± 0.02 | 11.88 ± 0.06 | 20.74 ± 0.08 |
S2 | 1.18 ± 0.05 | 13.37 ± 0.04 | 5.91 ± 0.01 | 7.82 ± 0.04 | 13.38 ± 0.03 |
S3 | 1.12 ± 0.04 | 12.86 ± 0.03 | 7.11 ± 0.01 | 10.52 ± 0.06 | 17.10 ± 0.05 |
S4 | 1.14 ± 0.04 | 12.61 ± 0.02 | 5.31 ± 0.01 | 6.96 ± 0.03 | 12.34 ± 0.04 |
SC | 1.19 ± 0.06 | 16.42 ± 0.03 | 9.27 ± 0.02 | 13.52 ± 0.07 | 23.54 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoaib, M.; Jamshaid, H.; Mishra, R.K.; Iqbal, K.; Müller, M.; Chandan, V.; Alexiou Ivanova, T. Flammability and Thermoregulation Performance of Multilayer Protective Clothing Incorporated with Phase Change Materials. Materials 2024, 17, 5826. https://doi.org/10.3390/ma17235826
Shoaib M, Jamshaid H, Mishra RK, Iqbal K, Müller M, Chandan V, Alexiou Ivanova T. Flammability and Thermoregulation Performance of Multilayer Protective Clothing Incorporated with Phase Change Materials. Materials. 2024; 17(23):5826. https://doi.org/10.3390/ma17235826
Chicago/Turabian StyleShoaib, Muhammad, Hafsa Jamshaid, Rajesh Kumar Mishra, Kashif Iqbal, Miroslav Müller, Vijay Chandan, and Tatiana Alexiou Ivanova. 2024. "Flammability and Thermoregulation Performance of Multilayer Protective Clothing Incorporated with Phase Change Materials" Materials 17, no. 23: 5826. https://doi.org/10.3390/ma17235826
APA StyleShoaib, M., Jamshaid, H., Mishra, R. K., Iqbal, K., Müller, M., Chandan, V., & Alexiou Ivanova, T. (2024). Flammability and Thermoregulation Performance of Multilayer Protective Clothing Incorporated with Phase Change Materials. Materials, 17(23), 5826. https://doi.org/10.3390/ma17235826