Advances in Non-Destructive Testing Methods
1. Introduction
- Visual methods;
- Penetrant methods;
- Magnetic powder methods;
- Methods using eddy currents;
- Thermographic methods;
- Vibration methods;
- Acoustic methods;
- Ultrasonic methods;
- Radiographic methods.
2. A Statistical Look at the Research Presented in this Topic
3. Summary of the Contributions
Conflicts of Interest
References
- Żurek, Z.; Idziak, P.; Kowalski, K.; Peruń, G. Miniature resonant defectoscope for pre-diagnosis in rail transportation Pomiary magnetyczne i magnetoindukcyjne. Napędy I Sterow. 2018, 20, 11. [Google Scholar]
- Artagan, S.; Ciampoli, L.; D’Amico, F.; Calvi, A.; Tosti, F. Non-destructive Assessment and Health Monitoring of Railway Infrastructures. Surv. Geophys. 2020, 41, 447–483. [Google Scholar] [CrossRef]
- Hovanec, M.; Korba, P.; Jencova, E.; Koscak, P.; Pil’a, J.; Yagnik, P. Non Destructive Testing in the Case of Aircraft Wheel Overhaul. In Proceedings of the Transport Means—International Conference, Trakai, Lithuania, 3–5 October 2018. [Google Scholar]
- Jolly, M.R.; Prabhakar, A.; Sturzu, B.; Hollstein, K.; Singh, R.; Thomas, S.; Foote, P.; Shaw, A. Review of Non-destructive Testing (NDT) Techniques and their applicability to thick walled composites. The Fourth International Conference on Through-life Engineering Services. Procedia CIRP 2015, 38, 129–136. [Google Scholar] [CrossRef]
- Mix, E.P. Introduction to Nondestructive Testing: A Training Guide, 2nd ed.; Willey-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- Electromagnetic Testing. In NDT Handbook, 2nd ed.; McIntyre, P.; Mester, M. (Eds.) ASNT: Columbus, OH, USA, 1986; Volume 4. [Google Scholar]
- Peruń, G.; Krawiec, S. Badania nieniszczące. Charakterystyka i klasyfikacja. Wprowadzenie do metody prądów wirowych. In Utrzymanie Ruchu; Wydawnictwo Elamed: Katowice, Poland, 2017; p. 44. [Google Scholar]
- Peruń, G. Badania nieniszczące—Charakterystyka badań wizualnych. In Utrzymanie Ruchu; Wydawnictwo Elamed: Katowice, Poland, 2022; pp. 48–52. [Google Scholar]
- Peruń, G. Badania nieniszczące magnetyczno-proszkowe MT. In Utrzymanie Ruchu; Wydawnictwo Elamed: Katowice, Poland, 2023; pp. 1–5. [Google Scholar]
- Li, G.; Shi, J.; Gao, C.; Jiang, X.; Huo, S.; Cui, C.; Chen, X.; Zhou, W. MEMS High Aspect Ratio Trench Three-Dimensional Measurement Using Through-Focus Scanning Optical Microscopy and Deep Learning Method. Appl. Sci. 2022, 12, 8396. [Google Scholar] [CrossRef]
- Mekterović, I.; Svalina, G.; Isaković, S.; Mičetić, M. GisaxStudio—An Open Platform for Analysis and Simulation of GISAXS from 3D Nanoparticle Lattices. Appl. Sci. 2022, 12, 9773. [Google Scholar] [CrossRef]
- Park, J.Y.; Mun, J.; Lee, J.H.; Yeon, Y.-H.; Chae, M.; Lee, M.; Lee, N.-H. Development of a Dual-Modality Gamma-ray/Fast Neutron Imaging System for Air Cargo Inspection. Appl. Sci. 2022, 12, 9775. [Google Scholar] [CrossRef]
- Jasiuniene, E.; Yilmaz, B.; Smagulova, D.; Bhat, G.A.; Cicenas, V.; Žukauskas, E.; Mažeika, L. Non-Destructive Evaluation of the Quality of Adhesive Joints Using Ultrasound, X-ray, and Feature-Based Data Fusion. Appl. Sci. 2022, 12, 12930. [Google Scholar] [CrossRef]
- Swiderski, W.; Strag, M. Possibilities of Detecting Damage Due to Osmosis of GFRP Composites Used in Marine Applications. Appl. Sci. 2023, 13, 4171. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, Q.; Lin, N.; Lan, H.; Zhang, H.; Ergesh, T. Identification and Classification of Defects in PE Gas Pipelines Based on VGG16. Appl. Sci. 2022, 12, 11697. [Google Scholar] [CrossRef]
- Lu, P.; Chen, S.; Sheng, X.; Gao, Y. Application of the Differential Evolutionary Algorithm to the Estimation of Pipe Embedding Parameters. Sensors 2022, 22, 3942. [Google Scholar] [CrossRef]
- Xerri, W.; Saracco, G.; Ribodetti, A.; Zomero, L.; Picon, P. Three-Dimensional Localization of Buried Polyethylene Pipes Using Acoustic Method. Sensors 2022, 22, 9433. [Google Scholar] [CrossRef]
- Liu, B.; Ge, Q.; Wu, Z.; Lian, Z.; Yang, L.; Geng, H. The Signal Characteristics of Oil and Gas Pipeline Leakage Detection Based on Magneto-Mechanical Effects. Sensors 2023, 23, 1857. [Google Scholar] [CrossRef]
- Pasnikowska-Łukaszuk, M.; Wlazło-C’ wiklin’ ska, M.; Zubrzycki, J.; Suchorab, Z. Comparison of Measurement Possibilities by Non-Invasive Reflectometric Sensors and Invasive Probes. Appl. Sci. 2023, 13, 665. [Google Scholar] [CrossRef]
- Chen, G.; Chen, X.; Yang, L.; Han, Z.; Bassir, D. An Inversion Algorithm for the Dynamic Modulus of Concrete Pavement Structures Based on a Convolutional Neural Network. Appl. Sci. 2023, 13, 1192. [Google Scholar] [CrossRef]
- Callejas, A.; Palma, R.; Hernández-Figueirido, D.; Rus, G. Damage Detection Using Ultrasonic Techniques in Concrete-Filled Steel Tubes (CFSTs) Columns. Sensors 2022, 22, 4400. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, Q.; Zheng, K.; Jin, C.; Pan, L. Mesoscale Study on Splitting Tensile Damage Characteristics of Concrete Based on X-ray Computed Tomography and Digital Image Correlation Technology. Materials 2022, 15, 4416. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, J.; Chen, X.; Zeng, R. Effect of Temperature on Ultrasonic Nonlinear Parameters of Carbonated Concrete. Materials 2022, 15, 8797. [Google Scholar] [CrossRef]
- Syasko, M.; Solomenchuk, P.; Soloviev, I.; Ampilova, N. A Technique for Multi-Parameter Signal Processing of an Eddy-Current Probe for Measuring the Thickness of Non-Conductive Coatings on Non-Magnetic Electrically Conductive Base Metals. Appl. Sci. 2023, 13, 5144. [Google Scholar] [CrossRef]
- Geminiani, L.; Campione, F.P.; Canevali, C.; Corti, C.; Giussani, B.; Gorla, G.; Luraschi, M.; Recchia, S.; Rampazzi, L. Historical Silk: A Novel Method to Evaluate Degumming with Non-Invasive Infrared Spectroscopy and Spectral Deconvolution. Materials 2023, 16, 1819. [Google Scholar] [CrossRef]
- Wang, N.; Shang, L.; Song, X. A Transformer-Optimized Deep Learning Network for Road Damage Detection and Tracking. Sensors 2023, 23, 7395. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, J.; Zhao, G. Learning fromProjection to Reconstruction: A Deep Learning Reconstruction Framework for Sparse-view Phase Contrast Computed Tomography via Dual-domain Enhancement. Appl. Sci. 2023, 1, 6051. [Google Scholar] [CrossRef]
- Zdziebko, P.; Krzemiński, M.; Okon, M.; Loi, G.; Aymerich, F.; Pieczonka, Ł.; Klepka, A. An Approach to the Automated Characterization of Out-of-Plane and In-Plane Local Defect Resonances. Materials 2023, 16, 3084. [Google Scholar] [CrossRef]
- Kursun, K.; Güven, F.; Ersoy, H. Utilizing Piezo Acoustic Sensors for the Identification of Surface Roughness and Textures. Sensors 2022, 22, 4381. [Google Scholar] [CrossRef]
- Guo, Z.; Li, L.; Han, W.; Guo, Z. SF6 High-Voltage Circuit Breaker Contact Status Detection at Different Currents. Sensors 2022, 22, 8490. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peruń, G. Advances in Non-Destructive Testing Methods. Materials 2024, 17, 554. https://doi.org/10.3390/ma17030554
Peruń G. Advances in Non-Destructive Testing Methods. Materials. 2024; 17(3):554. https://doi.org/10.3390/ma17030554
Chicago/Turabian StylePeruń, Grzegorz. 2024. "Advances in Non-Destructive Testing Methods" Materials 17, no. 3: 554. https://doi.org/10.3390/ma17030554
APA StylePeruń, G. (2024). Advances in Non-Destructive Testing Methods. Materials, 17(3), 554. https://doi.org/10.3390/ma17030554