Preparation of Ceramic Fiber Threads with Enhanced Abrasion Resistance Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experiment Process
2.2. Characterization
3. Results and Discussion
3.1. Morphology and Structure Characterization
3.2. Abrasion Resistance Property of Modified Ceramic Fiber Threads
3.3. Tensile Property, Hydrophobicity, and Linear Density
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chai, R.Q.; Tsourdos, A.; Savvaris, A.; Chai, S.C.; Xia, Y.Q.; Philip Chen, C.L. Review of advanced guidance and control algorithms for space/aerospace vehicles. Prog. Aerosp. Sci. 2021, 122, 100696. [Google Scholar] [CrossRef]
- Uyanna, O.; Najafi, H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects. Acta Astronaut. 2020, 176, 341–356. [Google Scholar] [CrossRef]
- Kim, H.S.; Kang, B.R.; Choi, S.M. Microstructure and mechanical properties of vacuum plasma sprayed HfC, TiC, and HfC/TiC ultra-high-temperature ceramic coatings. Materials 2019, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Jayaseelan, D.D.; Xin, Y.; Vandeperre, L.; Brown, P.; Lee, W.E. Development of multi-layered thermal protection system (TPS) for aerospace applications. Compos. B Eng. 2015, 79, 392–405. [Google Scholar] [CrossRef]
- Kim, N.; Kim, Y.; Yun, J.M.; Jeong, S.K.; Lee, S.; Lee, B.Z.; Shim, J. Surface Coating of titanium dioxide nanoparticles with a polymerizable chelating agent and its physicochemical property. ACS Omega 2023, 8, 18743–18750. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.C.; Liu, J.X.; Chen, Z.L.; Hu, X.X.; Zhai, W.Z.; Tao, X.; Liu, J.C. Joining zirconia with nickel-based superalloys for extreme applications by using a pressure-free high-temperature resistant adhesive. Ceram. Int. 2022, 48, 8025–8030. [Google Scholar] [CrossRef]
- Wang, M.C.; Bu, F.X.; Zhou, C.J.; Zhou, Q.J.; Wei, T.; Liu, J.C.; Zhai, W.Z. Bonding performance and mechanism of a heat-resistant composite precursor adhesive (RT-1000 °C) for TC4 titanium alloy. J. Micromech. Mol. Phys. 2020, 5, 2050016. [Google Scholar] [CrossRef]
- Devapal, D.; Gopakumar, M.P.; Prabhakaran, P.V.; Packirisamy, S. Ceramic coating on flexible external insulation. Curr. Sci. 2018, 114, 137–143. [Google Scholar] [CrossRef]
- Tao, X.; Zhang, L.Y.; Ma, X.H.; Xu, X.J.; Guo, A.R.; Hou, F.; Liu, J.C. Preparation of a flexible high emissivity coating on quartz fiber fabric for thermal protection. Ceram. Int. 2017, 43, 14292–14300. [Google Scholar] [CrossRef]
- Bardy, E.R.; Mollendorf, J.C.; Pendergast, D.R. Thermal Conductivity and Compressive Strain of Aerogel Insulation Blankets Under Applied Hydrostatic Pressure. J. Heat Transf. 2007, 129, 232–235. [Google Scholar] [CrossRef]
- Triantou, K.I.; Mergia, K.; Perez, B.; Florez, S.; Stefan, A.; Ban, C.; Pelin, G.; Ionescu, G.; Zuber, C.; Fischer, W.P.P.; et al. Thermal shock performance of carbon-bonded carbon fiber composite and ceramic matrix composite joints for thermal protection re-entry applications. Compos. Part B-Eng. 2017, 111, 270–278. [Google Scholar] [CrossRef]
- Liu, P.S.; Zhang, X.Y.; Xue, Y.J.; Guo, A.R.; Liu, J.C. A novel B2O3/B4C-modified composite adhesive with wide operative temperature range for alumina fiber fabric bonding. Ceram. Int. 2021, 47, 6643–6652. [Google Scholar] [CrossRef]
- Mouchon, E.; Colomban, P. Oxide ceramic matrix/oxide fibre woven fabric composites exhibiting dissipative fracture behaviour. Composites 1995, 26, 175–182. [Google Scholar] [CrossRef]
- Stepanova, E.V.; Maksimov, V.G.; Ivakhnenko, Y.A. Internal defects of multifilament threads made of oxide refractory fibers. Refract. Ind. Ceram. 2022, 63, 100–104. [Google Scholar] [CrossRef]
- Kamiuto, K. Two-parameter formula for the total effective thermal conductivities of ceramic-fiber insulations. Energy 1991, 16, 701–706. [Google Scholar] [CrossRef]
- Jalouli, A.; Khuje, S.; Sheng, A.; Islam, A.; Luigi, M.D.; Petit, D.; Li, Z.; Zhuang, C.G.; Kester, L.; Armstrong, J.; et al. Flexible Copper–Graphene Nanoplates on Ceramic Supports for Radiofrequency Electronics with Electromagnetic Interference Shielding and Thermal Management Capacity. ACS Appl. Nano Mater. 2021, 4, 11841–11848. [Google Scholar] [CrossRef]
- Penide-Fernandez, R.; Sansoz, F. Anisotropic thermal conductivity under compression in two-dimensional woven ceramic fibers for flexible thermal protection systems. Int. J. Heat Mass Transf. 2019, 145, 118721. [Google Scholar] [CrossRef]
- Yu, J.S.; Park, S.; Lee, J.C.; Hahn, I.S.; Woo, S.K. Electrical and thermal properties of carbon-coated porous ceramic fiber composites. Mater. Sci. Forum 2005, 486, 370–373. [Google Scholar] [CrossRef]
- Rahbek, D.B.; Roberson, G.E.; Johnsen, B.B. Improved ballistic limit velocity from filament-wound fibres as composite cover on ceramic tiles. Compos. Struct. 2023, 323, 117452. [Google Scholar] [CrossRef]
- Yalamac, E.; Sutcu, M.; Basturk, S.B. 9-Ceramic fibers. In Fiber Technology for Fiber-Reinforced Composites-Ceramic Fibers; Elsevier: Amsterdam, The Netherlands, 2017; pp. 187–207. [Google Scholar]
- Samuel Wesley, D.; Rengasamy, R.S. Changes in tensile properties of needle thread in lock stitch sewing. Fibers Polym. 2017, 18, 390–399. [Google Scholar] [CrossRef]
- Khairunnisa-Atiqah, M.K.; Salleh, K.M.; Ainul Hafiza, A.H.; Nyak Mazlan, N.S.; Mostapha, M.; Zakaria, S. Impact of drying regimes and different coating layers on carboxymethyl cellulose cross-linked with citric acid on cotton thread fibers for wound dressing modification. Polymers 2022, 14, 1217. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Du, B.H.; Chen, G.Q.; Zhao, G.D.; Cheng, Y.; Zhou, S.B.; Lv, Q.R.; Zhang, X.H.; Han, W.B. Microstructural regulation, oxidation resistance, and mechanical properties of Cf/SiC/SiHfBOC composites prepared by chemical vapor infiltration with precursor infiltration pyrolysis. J. Adv. Ceram. 2021, 11, 120–135. [Google Scholar] [CrossRef]
- Mohammed, H.; Sukumar, N. Water penetration and abrasion resistance of functional nonwoven fabrics produced using recycled cotton and acrylic fibers. J. Nat. Fibers 2022, 19, 10001–10014. [Google Scholar] [CrossRef]
- Muralidhar, B.A. Effect of workwear fabric fluorocarbon coating on changes in tensile properties of sewing threads. Tekstilec 2022, 65, 125–134. [Google Scholar]
- Keskenler, E.F.; Doan, S.; Diyarbakr, B.; Duman, S.; Gürbulak, B. Structural and optical properties of ZnO thin films by the spin coating Sol-Gel method. J. Sol-Gel Sci. Technol. 2011, 60, 66–70. [Google Scholar] [CrossRef]
- Kasashima, Y.; Brenner, T.; Vissing, K. Development of a novel plasma probe for the investigation and control of plasma-ehanced chemical vapor depositioncoating processes. Plasma Process. Polym. 2020, 17, e2000077. [Google Scholar] [CrossRef]
- Matsuguchi, M.; Tada, A. Fabrication of poly(N-isopropylacrylamide) nanoparticles using a simple spray-coating method and applications for a QCM-based HCl gas sensor coating. Sens. Actuators B-Chem. 2017, 251, 821–827. [Google Scholar] [CrossRef]
- Petrushenko, D.; Rahmati, Z.; Barazanchy, D.; Backer, W.D.; Mustain, W.E.; White, R.E.; Ziehl, P.; Coman, P.T. Dip-coating of carbon fibers for the development of lithium iron phosphate electrodes for structural lithium-ion batteries. Energy Fuels 2023, 37, 711–723. [Google Scholar] [CrossRef]
- Feng, Z.J.; Wang, M.C.; Lu, R.Y.; Xu, W.C.; Zhang, T.; Tong, W.; Zhang, J.F.; Liao, Y.L. A composite structural high-temperature-resistant adhesive based on in-situ grown mullite whiskers. Mater. Today Commun. 2020, 23, 100944. [Google Scholar] [CrossRef]
- Chen, H.; Xiang, H.M.; Dai, F.Z.; Liu, J.C.; Zhou, Y.C. High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion. J. Mater. Sci. Technol. 2020, 36, 134–139. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, B.; Zhao, Z.F.; Xiang, H.M.; Dai, F.Z.; Liu, J.C.; Zhou, Y.C. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides. J. Mater. Sci. Technol. 2020, 47, 216–222. [Google Scholar] [CrossRef]
- Schmücker, M.; Mechnich, P. Microstructural coarsening of NextelTM 610 fibers embedded in alumina-based matrices. J. Am. Ceram. Soc. 2008, 91, 1306–1308. [Google Scholar] [CrossRef]
- Cai, G.S.; Wu, J.X.; Guo, J.Y.; Wan, Y.G.; Zhou, Q.J.; Zhang, P.Y.; Yu, X.L.; Wang, M.C. A Novel Inorganic Aluminum Phosphate-Based Flame Retardant and Thermal Insulation Coating and Performance Analysis. Materials 2023, 16, 4498. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.X.; Xu, X.Q.; Li, X.; Chen, X.; Luo, Y.S. Microstructure evolution and properties of silica-based ceramic cores reinforced by mullite fibers. J. Alloys Compd. 2022, 829, 154494. [Google Scholar] [CrossRef]
- Yazdani, A.; Manesh, H.D.; Zebarjad, S.M. Piezoelectric properties and damping behavior of highly loaded pzt/polyurethane particulate composites. Ceram. Int. 2023, 49, 4055–4063. [Google Scholar] [CrossRef]
- Cho, H.; Lee, H.; Lee, S.; Kim, S. Reduced graphene oxide-based wearable and bio-electrolyte triggered pressure sensor with tunable sensitivity. Ceram. Int. 2021, 47, 17702–17710. [Google Scholar] [CrossRef]
- Wang, M.C.; Liang, Z.L.; Yan, S.Q.; Tao, X.; Zou, Y.L.; Li, J.T.; Zhou, X.M.; Zhang, H.J. The preparation and property analysis of B4C modified inorganic amorphous aluminum phosphates-based intumescent flame retardant coating. Constr. Build. Mater. 2022, 359, 129480. [Google Scholar] [CrossRef]
- Kwon, Y.R.; Kim, H.C.; Moon, S.K.; Kim, J.S.; Chang, Y.W.; Kim, D.H. Facile preparation and characterization of low-gloss waterborne polyurethane coatings using amine-based chain extenders. Polym. Int. 2022, 72, 54–60. [Google Scholar] [CrossRef]
- Li, X.; Niu, S.X.; Wang, D.S.; Li, J.; Jiao, Q.; Guo, X.L.; Xu, X.Q. Microstructure and Crystallization Kinetics of Silica-Based Ceramic Cores with Enhanced High-Temperature Property. Materials 2023, 16, 606. [Google Scholar] [CrossRef]
- Liu, W.; Xie, Y.S.; Deng, Z.Z.; Peng, Y.; Dong, J.H.; Zhu, Z.; Ma, D.H.; Zhu, L.Y.; Zhang, G.H.; Wang, X.Q. Modification of YSZ fiber composites by Al2TiO5 fibers for high thermal shock resistance. J. Adv. Ceram. 2022, 11, 922–934. [Google Scholar] [CrossRef]
- Gao, Y.H.; Xu, G.G.; Zhao, P.; Liu, L.L.; Zhang, E.L. One step co-sintering synthesis of gradient ceramic microfiltration membrane with mullite/alumina whisker bi-layer for high permeability oil-in-water emulsion treatment. Sep. Purif. Technol. 2023, 305, 122400. [Google Scholar] [CrossRef]
- Gao, Y.H.; Hao, W.R.; Xu, G.G.; Wang, C.; Gu, X.Y.; Zhao, P. Enhancement of super-hydrophilic/underwater super-oleophobic performance of ceramic membrane with TiO2 nanowire array prepared via low temperature oxidation. Ceram. Int. 2022, 48, 9426–9433. [Google Scholar] [CrossRef]
- Thomas, J.; Patil, R.S.; Patil, M.; John, J. Addressing the sustainability conundrums and challenges within the polymer value chain. Sustainability 2023, 15, 15758. [Google Scholar] [CrossRef]
Type of Modifier | Concentration (%) | Linear Density (Tex) | Friction Cycles at Fracture | Tensile Strength (MPa) | Elongation (%) |
---|---|---|---|---|---|
HDI-WPU | 3 | 461 | 410 | 154.1 | 5.5 |
9 | 472 | 186 | 203.9 | 6.6 | |
15 | 479 | 131 | 229.9 | 6.9 | |
30 | 514 | 28 | 197.8 | 5.7 | |
IPDI-WPU | 3 | 467 | 200 | 184.4 | 6.3 |
9 | 478 | 103 | 168.7 | 5.6 | |
15 | 500 | 96 | 140.2 | 4.8 | |
30 | 544 | 1 | 152.3 | 4.4 | |
MDI-TPU | / | 772 | 1 | 115.6 | 4.5 |
Without modifier | 0 | 460 | 121 | 88.2 | 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Hou, F.; Du, H.; Yan, L.; Guo, A.; Ma, X.; Liu, J. Preparation of Ceramic Fiber Threads with Enhanced Abrasion Resistance Performance. Materials 2024, 17, 599. https://doi.org/10.3390/ma17030599
Zhang X, Hou F, Du H, Yan L, Guo A, Ma X, Liu J. Preparation of Ceramic Fiber Threads with Enhanced Abrasion Resistance Performance. Materials. 2024; 17(3):599. https://doi.org/10.3390/ma17030599
Chicago/Turabian StyleZhang, Xueying, Feng Hou, Haiyan Du, Liwen Yan, Anran Guo, Xiaohui Ma, and Jiachen Liu. 2024. "Preparation of Ceramic Fiber Threads with Enhanced Abrasion Resistance Performance" Materials 17, no. 3: 599. https://doi.org/10.3390/ma17030599
APA StyleZhang, X., Hou, F., Du, H., Yan, L., Guo, A., Ma, X., & Liu, J. (2024). Preparation of Ceramic Fiber Threads with Enhanced Abrasion Resistance Performance. Materials, 17(3), 599. https://doi.org/10.3390/ma17030599