Statistical Analysis of Morphological Characteristics of Inconel 718 Formed by High Deposition Rate and High Laser Power Laser Cladding
Abstract
:1. Introduction
2. Experimental Setup
3. Results
3.1. Morphology of the Clad
3.2. Geometrical Characteristics of the Clad
4. Discussion
4.1. Clad Areas of Ac, Am, and A
4.2. Clad Heights of hc, hm, and H
4.3. Clad Width
4.4. Dilution Ratio
4.5. Wetting Angle
5. Conclusions
- The clad area can be used to evaluate the laser energy distribution between substrate and powder. The three parameters of the total area of the cross section A, the clad area above the substrate Ac, and the area of the molten pool in the substrate Am are introduced to evaluate the evolution of the melt pool areas. The values Ac, Am, and A can be linearly regressed by the combined parameters P0.5F/V, P/F0.2/V0.4, and PF0.4/V, which have been confirmed by large regression coefficients of 0.91, 0.85, and 0.88, respectively.
- The clad height above the substrate hc, the penetration depth hm, and the total height of the cross-section H, which are dominated by the complex coupling of energy input and mass accumulation, are directly proportional to PF/0.7V, P2/F/V0.3, and P2F0.6/V, respectively, and the regression coefficients are 0.87, 0.74, and 0.86, respectively.
- The ratio of clad width W and the penetration depth hm is in the range of 11 and 34, meaning that the Marangoni convection in the melt pool is outward and becomes the main driving force of the evolution of the width W. The cladding width W is mainly controlled by the laser energy input, confirmed by a linear relationship with the combined parameter P/V0.8.
- The dilution ratio D and the wetting angle θ are the two most important characteristics of the clad, which can be used to evaluate porosity and bonding strength. The D and θ are directly proportional to the combined parameters P/FV0.2 and PF7/V0.8 with linear regression coefficients of 0.86 and 0.83, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qi, H.; Azer, M.; Ritter, A. Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured INCONEL 718. Met. Mater. Trans. A 2009, 40, 2410–2422. [Google Scholar] [CrossRef]
- Parimi, L.; Attallah, M.; Gebelin, J.; Reed, R. Direct Laser Fabrication of INCONEL-718: Effects on Distortion and Microstructure, Superalloys. In Proceedings of the 12th International Symposium on Superalloys, Seven Springs, PA, USA, 9–13 September 2012; pp. 511–519. [Google Scholar]
- Alizadeh-Sh, M.; Marashi, S.; Ranjbarnodeh, E.; Shoja-Razavi, R. Laser cladding of Inconel 718 powder on a non-weldable substrate: Clad bead geometry-solidification cracking relationship. J. Manuf. Process. 2020, 56, 54–62. [Google Scholar] [CrossRef]
- Shao, J.; Yu, G.; Li, S.; He, X.; Tian, C.; Dong, B. Crystal growth control of Ni-based alloys by modulation of the melt pool morphology in DED. J. Alloys Compd. 2021, 898, 162976. [Google Scholar] [CrossRef]
- Limmaneevichitr, C.; Kou, S. Experiments to simulate effect of Marangoni convection on weld pool shape. Weld. J. 2000, 79, 231S–237S. [Google Scholar]
- Wei, P.S.; Ting, C.N.; Yeh, J.S.; DebRoy, T.; Chung, F.K.; Yan, G.H. Origin of wavy weld boundary. J. Appl. Phys. 2009, 105, 053508. [Google Scholar] [CrossRef]
- Robert, A.; Debroy, T. Geometry of laser spot welds from dimensionless numbers. Met. Mater. Trans. B 2001, 32, 941–947. [Google Scholar] [CrossRef]
- Tseng, C.-C.; Wang, Y.-C.; Ho, M.-I. Scaling laws and numerical modelling of the laser direct energy deposition. Int. J. Heat Mass Transf. 2023, 217. [Google Scholar] [CrossRef]
- Zhao, Y.; Guan, C.; Chen, L.; Sun, J.; Yu, T. Effect of process parameters on the cladding track geometry fabricated by laser cladding. Optik 2020, 223, 165447. [Google Scholar] [CrossRef]
- Gopal, D.; Ramasamy, S.; Murugesan, M.; Venkatesan, C.; Govindan, S.M.; Sathyamurthy, R. Optimization of processing parameters of cold metal transfer joined 316L and weld bead profile influenced by temperature distribution based on genetic algorithm. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 10271–10280. [Google Scholar] [CrossRef]
- Pant, P.; Chatterjee, D. Prediction of clad characteristics using ANN and combined PSO-ANN algorithms in laser metal deposition process. Surfaces Interfaces 2020, 21, 100699. [Google Scholar] [CrossRef]
- Hao, J.; Yang, S.; Le, X.; Królczyk, G.; Sulowicz, M.; Glowacz, A.; Li, Z. Bead morphology prediction of coaxial laser cladding on inclined substrate using machine learning. J. Manuf. Process. 2023, 98, 159–172. [Google Scholar] [CrossRef]
- Costa, L.; Felde, I.; Réti, T.; Kálazi, Z.; Colaço, R.; Vilar, R.; Verő, B. A Simplified Semi-Empirical Method to Select the Processing Parameters for Laser Clad Coatings. Mater. Sci. Forum 2003, 414–415, 385–394. [Google Scholar] [CrossRef]
- Ilanlou, M.; Razavi, R.S.; Nourollahi, A.; Hosseini, S.; Haghighat, S. Prediction of the geometric characteristics of the laser cladding of Inconel 718 on the Inconel 738 substrate via genetic algorithm and linear regression. Opt. Laser Technol. 2022, 156, 108507. [Google Scholar] [CrossRef]
- Bax, B.; Rajput, R.; Kellet, R.; Reisacher, M. Systematic evaluation of process parameter maps for laser cladding and directed energy deposition. Addit. Manuf. 2018, 21, 487–494. [Google Scholar] [CrossRef]
- Amirjan, M.; Khodabandeh, M. Correlation Between Processing Parameters in Direct Metal Deposition of IN625 Nickel-Base Superalloy. J. Mater. Eng. Perform. 2021, 31, 1373–1386. [Google Scholar] [CrossRef]
- Shayanfar, P.; Daneshmanesh, H.; Janghorban, K. Parameters Optimization for Laser Cladding of Inconel 625 on ASTM A592 Steel. J. Mater. Res. Technol. 2020, 9, 8258–8265. [Google Scholar] [CrossRef]
- Mazzarisi, M.; Campanelli, S.L.; Angelastro, A.; Dassisti, M. Phenomenological modelling of direct laser metal deposition for single tracks. Int. J. Adv. Manuf. Technol. 2020, 111, 1955–1970. [Google Scholar] [CrossRef]
- Jelvani, S.; Razavi, R.S.; Barekat, M.; Dehnavi, M. Empirical-Statistical Modeling and Prediction of Geometric Characteristics for Laser-Aided Direct Metal Deposition of Inconel 718 Superalloy. Met. Mater. Int. 2020, 26, 668–681. [Google Scholar] [CrossRef]
- Nabhani, M.; Razavi, R.S.; Barekat, M. An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate. Opt. Laser Technol. 2018, 100, 265–271. [Google Scholar] [CrossRef]
- Erfanmanesh, M.; Abdollah-Pour, H.; Mohammadian-Semnani, H.; Shoja-Razavi, R. An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel. Opt. Laser Technol. 2017, 97, 180–186. [Google Scholar] [CrossRef]
- Ocelík, V.; de Oliveira, U.; de Boer, M.; de Hosson, J. Thick Co-based coating on cast iron by side laser cladding: Analysis of processing conditions and coating properties. Surf. Coat. Technol. 2007, 201, 5875–5883. [Google Scholar] [CrossRef]
- Ansari, M.; Razavi, R.S.; Barekat, M. An empirical-statistical model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy. Opt. Laser Technol. 2016, 86, 136–144. [Google Scholar] [CrossRef]
- El Cheikh, H.; Courant, B.; Branchu, S.; Hascoët, J.-Y.; Guillén, R. Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process. Opt. Lasers Eng. 2012, 50, 413–422. [Google Scholar] [CrossRef]
- de Oliveira, U.; Ocelík, V.; De Hosson, J. Analysis of coaxial laser cladding processing conditions. Surf. Coat. Technol. 2005, 197, 127–136. [Google Scholar] [CrossRef]
- Zhong, C.; Gasser, A.; Kittel, J.; Wissenbach, K.; Poprawe, R. Improvement of materialperformance of Inconel 718 formed by high deposition-rate laser metal deposition. Mater. Des. 2016, 98, 128–134. [Google Scholar] [CrossRef]
- Martina, F.; Ding, J.; Williams, S.; Caballero, A.; Pardal, G.; Quintino, L. Tandem metal inert gas process for high productivity wire arcadditive manufacturing in stainless steel. Addit. Manuf. 2019, 25, 545–550. [Google Scholar]
- Bian, Y.; He, X.; Yu, G.; Li, S.; Tian, C.; Li, Z.; Zhang, Y.; Liu, J. Powder-flow behavior and process mechanism in laser directed energy deposition based on determined restitution coefficient from inverse modeling. Powder Technol. 2022, 402, 117355. [Google Scholar] [CrossRef]
- Atamert, S.; Bhadeshia, H.K.D.H. Comparison of the microstructures and abrasive wear properties of stellite hardfacing alloys deposited by arc welding and laser cladding. Met. Trans. A 1989, 20, 1037–1054. [Google Scholar] [CrossRef]
- Mills, K.C.; Youssef, Y.M.; Li, Z.; Su, Y. Calculation of Thermophysical Properties of Ni-based Superalloys. ISIJ Int. 2006, 46, 623–632. [Google Scholar] [CrossRef]
Alloy | Ni | Nb | Mo | Cr | Al | Ti | Co | C | Si | S | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
IN718 | 52.98 | 5.07 | 3.12 | 19.1 | 0.5 | 0.95 | 0.049 | 0.039 | 0.093 | 0.003 | Bal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, Y.; He, X.; Tian, C.; Guo, J.; Chen, B.; Dong, B.; Li, S.; Yu, G. Statistical Analysis of Morphological Characteristics of Inconel 718 Formed by High Deposition Rate and High Laser Power Laser Cladding. Materials 2024, 17, 638. https://doi.org/10.3390/ma17030638
Bian Y, He X, Tian C, Guo J, Chen B, Dong B, Li S, Yu G. Statistical Analysis of Morphological Characteristics of Inconel 718 Formed by High Deposition Rate and High Laser Power Laser Cladding. Materials. 2024; 17(3):638. https://doi.org/10.3390/ma17030638
Chicago/Turabian StyleBian, Yanhua, Xiuli He, Chongxin Tian, Jianhao Guo, Bo Chen, Binxin Dong, Shaoxia Li, and Gang Yu. 2024. "Statistical Analysis of Morphological Characteristics of Inconel 718 Formed by High Deposition Rate and High Laser Power Laser Cladding" Materials 17, no. 3: 638. https://doi.org/10.3390/ma17030638
APA StyleBian, Y., He, X., Tian, C., Guo, J., Chen, B., Dong, B., Li, S., & Yu, G. (2024). Statistical Analysis of Morphological Characteristics of Inconel 718 Formed by High Deposition Rate and High Laser Power Laser Cladding. Materials, 17(3), 638. https://doi.org/10.3390/ma17030638