Adsorption of Heavy Metals on Alkali-Activated Zeolite Foams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- -
- Iron(III) nitrate nonahydrate (Fe(NO3)3.9H2O) (Penta, s.r.o., Prague, Czech Republic)
- -
- Manganese(II) nitrate tetrahydrate (Mn(NO3)2.4H2O) (Acros Organics B.V.B.A., Geel, Belgium)
- -
- Copper(II) nitrate trihydrate (Cu(NO3)2.3H2O) (Acros Organics B.V.B.A., Geel, Belgium)
- -
- Nickel(II) nitrate hexahydrate (Ni(NO3)2.6H2O) (Penta, s.r.o., Prague, Czech Republic)
- -
- Zinc(II) nitrate hexahydrate (Zn(NO3)2.6H2O) (Lach-Ner, s.r.o., Neratovice, Czech Republic)
2.2. Methods
Synthesis of the Zeolite-Based Adsorbents
2.3. Characterization
2.4. Adsorption Tests
3. Results and Discussion
3.1. Characterisation of Adsorbents
3.1.1. XRF
3.1.2. XRD
3.2. Textural Properties
SEM
3.3. Laboratory Adsorption Experiments—Batch
3.4. Laboratory Adsorption Experiments—Continuous Flow
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
c (Initial) (mg/dm3) | c (Final) (mg/dm3) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fe | Mn | Cu | Ni | Zn | ||||||||
AZF | AA | KLI | AZF | AA | KLI | AZF | AA | AZF | AA | AZF | AA | |
0 | 3 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 |
10 | 10 | 9 | <2 | <2 | <2 | <2 | 6 | 8 | <2 | <2 | 2 | <2 |
25 | 22 | 24 | <2 | <2 | 7 | 7 | 10 | 11 | <2 | <2 | 10 | <2 |
50 | 33 | 53 | <2 | 3 | 3 | 25 | 13 | 18 | <2 | <2 | 11 | <2 |
100 | 29 | 44 | 11 | 5 | 15 | 72 | 22 | 25 | <2 | <2 | 16 | 29 |
250 | 10 | 12 | 113 | 19 | 6 | 239 | 15 | 18 | <2 | <2 | 6 | 12 |
500 | 4 | 5 | 380 | 8 | 39 | 420 | 112 | 139 | <2 | 9 | 74 | 155 |
1000 | 852 | 803 | 988 | 434 | 505 | 984 | 175 | 477 | 349 | 517 | 507 | 736 |
1500 | 1428 | 1396 | 1498 | 978 | 996 | 1644 | 748 | 1129 | 835 | 991 | 987 | 1343 |
2000 | 1994 | 1931 | 1981 | 1542 | 1561 | 2191 | 1318 | 1557 | 1388 | 1507 | 1675 | 1903 |
References
- Duffus, J.H. “Heavy Metals” a Meaningless Term? (Iupac Technical Report). Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of Heavy Metal Pollution from Anthropogenic Activities and Remediation Strategies: A Review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef]
- Singh, V.; Singh, N.; Rai, S.N.; Kumar, A.; Singh, A.K.; Singh, M.P.; Sahoo, A.; Shekhar, S.; Vamanu, E.; Mishra, V. Heavy Metal Contamination in the Aquatic Ecosystem: Toxicity and Its Remediation Using Eco-Friendly Approaches. Toxics 2023, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Pitter, P. Hydrochemie, 5th ed.; Vydavatelství VŠCHT Praha: Prague, Czech Republic, 2015. [Google Scholar]
- KKhokhar, L.A.K.; Khuhawar, M.Y.; Jahangir, T.M.; Arain, G.M.; Khokhar, F.M.; Khaskheli, M.I.; Khan, S.; FarooqueLajwani, M.; Abro, M.I.; Zounr, Z.A. Prosperity Risk Assessment by Heavy Metal Contamination on Human Health and Multivariate Statistical Analysis of Groundwater as a Drinking Source. Arab. J. Geosci. 2023, 16, 136. [Google Scholar] [CrossRef]
- Lei, K.; Pan, H.; Lin, C. A Landscape Approach Towards Ecological Restoration and Sustainable Development of Mining Areas. Ecol. Eng. 2016, 90, 320–325. [Google Scholar] [CrossRef]
- Skousen, J.; Zipper, C.E.; Rose, A.; Ziemkiewicz, P.F.; Nairn, R.; McDonald, L.M.; Kleinmann, R.L. Review of Passive Systems for Acid Mine Drainage Treatment. Mine Water Environ. 2017, 36, 133–153. [Google Scholar] [CrossRef]
- Boahen, F.; Száková, J.; Kališová, A.; Najmanová, J.; Tlustoš, P. The Assessment of the Soil–Plant-Animal Transport of the Risk Elements at the Locations Affected by Brown Coal Mining. Environ. Sci. Pollut. Res. 2023, 30, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Ugwu, E.I.; Othmani, A.; Nnaji, C.C. A Review on Zeolites as Cost-Effective Adsorbents for Removal of Heavy Metals from Aqueous Environment. Int. J. Environ. Sci. Technol. 2022, 19, 8061–8084. [Google Scholar] [CrossRef]
- Mo, Z.; Tai, D.; Zhang, H.; Shahab, A. A Comprehensive Review on the Adsorption of Heavy Metals by Zeolite Imidazole Framework (Zif-8) Based Nanocomposite in Water. Chem. Eng. J. 2022, 443, 136320. [Google Scholar] [CrossRef]
- Renu; Agarwal, M.; Singh, K. Heavy Metal Removal from Wastewater Using Various Adsorbents: A Review. J. Water Reuse Desalination 2017, 7, 387–419. [CrossRef]
- Tišler, Z.; Klegová, A.; Svobodová, E.; Šafář, J.; Strejcová, K.; Kohout, J.; Šlang, S.; Pacultová, K.; Rodríguez-Padrón, D.; Bulánek, R. Cobalt Based Catalysts on Alkali-Activated Zeolite Foams for N2o Decomposition. Catalysts 2020, 10, 1398. [Google Scholar] [CrossRef]
- Tisler, Z.; Horacek, J.; Safar, J.; Velvarska, R.; Peliskova, L.; Kocik, J.; Gherib, Y.; Marklova, K.; Bulanek, R.; Kubicka, D. Clinoptilolite Foams Prepared by Alkali Activation of Natural Zeolite and Their Post-Synthesis Modifications. Microporous Mesoporous Mater. 2019, 282, 169–178. [Google Scholar] [CrossRef]
- Hrachovcová, K.; Tišler, Z.; Svobodová, E.; Šafář, J. Modified Alkali Activated Zeolite Foams with Improved Textural and Mechanical Properties. Minerals 2020, 10, 483. [Google Scholar] [CrossRef]
- Tišler, Z.; Hrachovcová, K.; Svobodová, E.; Šafář, J.; Pelíšková, L. Acid and Thermal Treatment of Alkali-Activated Zeolite Foams. Minerals 2019, 9, 719. [Google Scholar] [CrossRef]
- Muttakin, M.; Mitra, S.; Thu, K.; Ito, K.; Saha, B.B. Theoretical Framework to Evaluate Minimum Desorption Temperature for Iupac Classified Adsorption Isotherms. Int. J. Heat Mass Transf. 2018, 122, 795–805. [Google Scholar] [CrossRef]
- Schneider, P. Adsorption Isotherms of Microporous-Mesoporous Solids Revisited. Appl. Catal. A Gen. 1995, 129, 157–165. [Google Scholar] [CrossRef]
- Schneider, D.; Attallah, A.G.; Wassersleben, S.; Wenzel, M.; Matysik, J.; Krause-Rehberg, R.; Enke, D. Advanced Textural Characterization of Biogenic Silica by Nitrogen Physisorption, Positron Annihilation Lifetime Spectroscopy and Hyperpolarized 129xe Nmr Spectroscopy. Microporous Mesoporous Mater. 2020, 307, 110515. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (Iupac Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Abu-Lail, L.; Bergendahl, J.A.; Thompson, R.W. Adsorption of Methyl Tertiary Butyl Ether on Granular Zeolites: Batch and Column Studies. J. Hazard. Mater. 2010, 178, 363–369. [Google Scholar] [CrossRef]
- Cagomoc, C.M.D.; Vasquez, M.R., Jr. Enhanced Chromium Adsorption Capacity Via Plasma Modification of Natural Zeolites. Jpn. J. Appl. Phys. 2016, 56, 01AF02. [Google Scholar] [CrossRef]
- Maulana, I.; Takahashi, F. Cyanide Removal Study by Raw and Iron-Modified Synthetic Zeolites in Batch Adsorption Experiments. J. Water Process. Eng. 2018, 22, 80–86. [Google Scholar] [CrossRef]
- Taamneh, Y.; Sharadqah, S. The Removal of Heavy Metals from Aqueous Solution Using Natural Jordanian Zeolite. Appl. Water Sci. 2016, 7, 2021–2028. [Google Scholar] [CrossRef]
- Nassar, N.N. Iron Oxide Nanoadsorbents for Removal of Various Pollutants from Wastewater: An Overview. In Application of Adsorbents for Water Pollution Control; Bentham Science Publishers: Potomac, MD, USA, 2012; pp. 81–118. [Google Scholar]
- Liang, K.; Wang, X.Q.; Chow, C.L.; Lau, D. A Review of Geopolymer and Its Adsorption Capacity with Molecular Insights: A Promising Adsorbent of Heavy Metal Ions. J. Environ. Manag. 2022, 322, 116066. [Google Scholar] [CrossRef]
- Doula, M.; Ioannou, A.; Dimirkou, A. Copper Adsorption and Si, Al, Ca, Mg, and Na Release from Clinoptilolite. J. Colloid Interface Sci. 2002, 245, 237–250. [Google Scholar] [CrossRef]
- Çoruh, S.; Ergun, O.N. Ni2+ Removal from Aqueous Solutions Using Conditioned Clinoptilolites: Kinetic and Isotherm Studies. Environ. Prog. Sustain. Energy Off. Publ. Am. Inst. Chem. Eng. 2009, 28, 162–172. [Google Scholar] [CrossRef]
- Erdem, E.; Karapinar, N.; Donat, R. The Removal of Heavy Metal Cations by Natural Zeolites. J. Colloid Interface Sci. 2004, 280, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Parwate, A.V.; Kadu, P.A.; Bhole, A.G. Performance of Low-Cost Adsorbents for the Removal of Copper and Lead. J. Water Supply Res. Technol. 2003, 52, 49–58. [Google Scholar] [CrossRef]
- Banerjee, S.S.; Jayaram, R.V.; Joshi, M.V. Removal of Nickel (Ii) and Zinc (Ii) from Wastewater Using Fly Ash and Impregnated Fly Ash. Sep. Sci. Technol. 2003, 38, 1015–1032. [Google Scholar] [CrossRef]
- Singh, A.; Singh, D.; Singh, V. Removal of Zn (Ii) from Water by Adsorption on China Clay. Environ. Technol. Lett. 1988, 9, 1153–1162. [Google Scholar] [CrossRef]
- Panday, K.K.; Prasad, G.; Singh, V.N. Mixed Adsorbents for Cu (Ii) Removal from Aqueous Solutions. Environ. Technol. Lett. 1986, 7, 547–554. [Google Scholar] [CrossRef]
- Cheng, T.; Lee, M.; Ko, M.; Ueng, T.; Yang, S. The Heavy Metal Adsorption Characteristics on Metakaolin-Based Geopolymer. Appl. Clay Sci. 2012, 56, 90–96. [Google Scholar] [CrossRef]
- Kara, İ.; Yilmazer, D.; Akar, S.T. Metakaolin Based Geopolymer as an Effective Adsorbent for Adsorption of Zinc (Ii) and Nickel (Ii) Ions from Aqueous Solutions. Appl. Clay Sci. 2017, 139, 54–63. [Google Scholar] [CrossRef]
- Kara, I.; Tunc, D.; Sayin, F.; Akar, S.T. Study on the Performance of Metakaolin Based Geopolymer for Mn (Ii) and Co (Ii) Removal. Appl. Clay Sci. 2018, 161, 184–193. [Google Scholar] [CrossRef]
Sample | Chemical Composition (Wt %) | Molar Ratio | |||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | K2O | Fe2O3 | CaO | Na2O | MgO | TiO2 | Si/Al | |
ZEOCEM 50 | 74.20 | 12.20 | 4.70 | 2.19 | 4.70 | 0.24 | 0.72 | 0.27 | 5.07 |
Sample | Wt % | Molar Ratio | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | K2O | Fe2O3 | CaO | Na2O | MgO | TiO2 | SUM | SiO2/Al2O3 | Si/Al | |
AZF | 68.80 | 10.00 | 8.63 | 1.19 | 2.72 | 5.12 | 3.19 | 0.16 | 99.81 | 11.68 | 5.84 |
AA | 69.10 | 9.86 | 8.55 | 1.25 | 2.83 | 4.96 | 3.07 | 0.17 | 99.79 | 11.89 | 5.95 |
KLI | 75.30 | 12.60 | 4.26 | 1.91 | 4.28 | 0.30 | 0.78 | 0.23 | 99.66 | 10.14 | 5.07 |
Parameter | AA | AZF | KLI |
---|---|---|---|
Surface area BET (m2/g) * | 12.8 | 13.6 | 24.5 |
Total pore volume (cm3/g) * | 0.12 | 0.10 | 0.16 |
Mesopore volume (cm3/g) * | 0.06 | 0.06 | 0.11 |
Total intrusion volume (mL/g) ** | 0.969 | 1.145 | 0.487 |
Adsorbent | Metal Ion | qe (mg/g) | Reference |
---|---|---|---|
AZF | Cu2+ | 107.5 | Present Study |
Fe3+ | 49.7 | Present Study | |
Ni2+ | 77.3 | Present Study | |
Mn2+ | 59.2 | Present Study | |
Zn2+ | 70.6 | Present Study | |
AA | Cu2+ | 54.1 | Present Study |
Fe3+ | 42.7 | Present Study | |
Ni2+ | 64.4 | Present Study | |
Mn2+ | 58.8 | Present Study | |
Zn2+ | 46.1 | Present Study | |
Natural zeolite | Cu2+ | 20.0 | [26] |
Ni2+ | 8.7 | [27] | |
Zn2+ | 13.4 | [28] | |
Fly ash | Cu2+ | 0.8 | [29] |
Ni2+ | 9.0 | [30] | |
Zn2+ | 6.5 | [30] | |
Kaolinite | Zn2+ | 1.3 | [31] |
Bentonite | Cu2+ | 4.5 | [32] |
Geopolymer | Cu2+ | 40.9 | [33] |
Zn2+ | 74.5 | [34] | |
Ni2+ | 42.6 | [34] | |
Mn2+ | 72.3 | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svobodová, E.; Tišler, Z.; Peroutková, K.; Strejcová, K.; Abrham, J.; Šimek, J. Adsorption of Heavy Metals on Alkali-Activated Zeolite Foams. Materials 2024, 17, 685. https://doi.org/10.3390/ma17030685
Svobodová E, Tišler Z, Peroutková K, Strejcová K, Abrham J, Šimek J. Adsorption of Heavy Metals on Alkali-Activated Zeolite Foams. Materials. 2024; 17(3):685. https://doi.org/10.3390/ma17030685
Chicago/Turabian StyleSvobodová, Eliška, Zdeněk Tišler, Kateřina Peroutková, Kateřina Strejcová, Jan Abrham, and Josef Šimek. 2024. "Adsorption of Heavy Metals on Alkali-Activated Zeolite Foams" Materials 17, no. 3: 685. https://doi.org/10.3390/ma17030685
APA StyleSvobodová, E., Tišler, Z., Peroutková, K., Strejcová, K., Abrham, J., & Šimek, J. (2024). Adsorption of Heavy Metals on Alkali-Activated Zeolite Foams. Materials, 17(3), 685. https://doi.org/10.3390/ma17030685