Chemical Composition and Mechanical Properties of Wood after Thermal Modification in Closed Process under Pressure in Nitrogen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermal Modification Process
2.3. Physical Parameters
- is the mass loss after TM in nitrogen [%];
- is the oven-dried mass of the boards before treatment [g];
- is the oven-dried mass of the boards after TM in nitrogen [g].
2.4. Chemical Analyses
- is the extractives content [%];
- is the oven-dried mass of the specimen before extraction [g];
- is the oven-dried mass of the specimen after extraction [g].
2.5. Mechanical Strength Tests
3. Results
3.1. Chemical Composition
3.2. Mechanical Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, C.; Altgen, M.; Rautkari, L. Thermal Modification of Wood—A Review: Chemical Changes and Hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Jones, D.; Sandberg, D. A Review of Wood Modification Globally—Updated Findings from COST FP1407. IPBE 2020, 1. [Google Scholar] [CrossRef]
- Jones, D.; Sandberg, D.; Goli, G.; Todaro, L. (Eds.) Wood Modification in Europe: A State-of-the-Art about Processes, Products and Applications, 1st ed.; Proceedings e Report; Firenze University Press: Florence, Italy, 2020; Volume 124, ISBN 978-88-6453-970-6. [Google Scholar]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood Modification Technologies—A Review. iForest 2017, 10, 895–908. [Google Scholar] [CrossRef]
- Sosins, G.; Grinins, J.; Brazdausks, P.; Zicans, J. Water-Related Properties of Wood after Thermal Modification in Closed Process under Pressure in Nitrogen. Forests 2024, 15, 140. [Google Scholar] [CrossRef]
- Giebeler, E. Dimensional Stabilization of Wood by Moisture-Heat-Pressure Treatment. Holz Roh-Werkst. 1983, 41, 87–94. [Google Scholar] [CrossRef]
- Feist, W.C.; Sell, J. Weathering Behavior of Dimensionally Stabilized Wood Treated by Heating under Pressure of Nitrogen Gas. Wood Fiber Sci. 1987, 19, 183–195. [Google Scholar]
- Pratiwi, L.A.; Darmawan, W.; Priadi, T.; George, B.; Merlin, A.; Gérardin, C.; Dumarçay, S.; Gérardin, P. Characterization of Thermally Modified Short and Long Rotation Teaks and the Effects on Coatings Performance. Maderas Cienc. Tecnol. 2019, 21, 209–222. [Google Scholar] [CrossRef]
- Chien, Y.-C.; Yang, T.-C.; Hung, K.-C.; Li, C.-C.; Xu, J.-W.; Wu, J.-H. Effects of Heat Treatment on the Chemical Compositions and Thermal Decomposition Kinetics of Japanese Cedar and Beech Wood. Polym. Degrad. Stab. 2018, 158, 220–227. [Google Scholar] [CrossRef]
- Tuong, V.M.; Li, J. Changes Caused by Heat Treatment in Chemical Composition and Some Physical Properties of Acacia Hybrid Sapwood. Holzforschung 2011, 65, 67–72. [Google Scholar] [CrossRef]
- Guimarães Carvalho, A.; Geike De Andrade, B.; Barros Donato, D.; Simões Da Silva, C.M.; De Cassia Oliveira Carneiro, A.; Resende De Castro, V.; Zanuncio, A.J.V. Bonding Perfomance of Structural Adhesives on Heat-Treated Mimosa Scabrella Andpinus Oocarpa Wood. Cellul. Chem. Technol. 2020, 54, 663–668. [Google Scholar] [CrossRef]
- Paes, J.; Brocco, V.; Loiola, P.; Segundinho, P.; Silva, M.; Juizo, C. Effect of Thermal Modification on Decay Resitance of Corymbia Citriodora and Pinus Taeda Wood. JTFS 2021, 33, 185–190. [Google Scholar] [CrossRef]
- Inari, G.N.; Pétrissans, M.; Pétrissans, A.; Gérardin, P. Elemental Composition of Wood as a Potential Marker to Evaluate Heat Treatment Intensity. Polym. Degrad. Stab. 2009, 94, 365–368. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Wagenführ, A.; Phuong, L.X.; Dai, V.H.; Bremer, M.; Fischer, S. The Effects of Thermal Modification on the Properties of Two Vietnamese Bamboo Species, Part I: Effects on Physical Properties. BioResources 2012, 7, 5355–5366. [Google Scholar] [CrossRef]
- Gawron, J.; Antczak, A.; Borysiak, S.; Zawadzki, J.; Kupczyk, A. The Study of Glucose and Xylose Content by Acid Hydrolysis of Ash Wood (Fraxinus excelsior L.) after Thermal Modification in Nitrogen by HPLC Method. BioResources 2014, 9, 3197–3210. [Google Scholar] [CrossRef]
- Bytner, O.; Laskowska, A.; Drożdżek, M.; Kozakiewicz, P.; Zawadzki, J. Evaluation of the Dimensional Stability of Black Poplar Wood Modified Thermally in Nitrogen Atmosphere. Materials 2021, 14, 1491. [Google Scholar] [CrossRef]
- Bytner, O.; Drożdżek, M.; Laskowska, A.; Zawadzki, J. Influence of Thermal Modification in Nitrogen Atmosphere on the Selected Mechanical Properties of Black Poplar Wood (Populus nigra L.). Materials 2022, 15, 7949. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, D.; Ma, L.; Wang, S.; Liu, X. Influence of Heat Treatment on the Water Uptake Behavior of Wood. BioResources 2017, 12, 1697–1705. [Google Scholar] [CrossRef]
- Grinins, J.; Andersons, B.; Biziks, V.; Andersone, I.; Dobele, G. Analytical Pyrolysis as an Instrument to Study the Chemical Transformations of Hydrothermally Modified Wood. J. Anal. Appl. Pyrolysis 2013, 103, 36–41. [Google Scholar] [CrossRef]
- Boonstra, M.J.; Van Acker, J.; Tjeerdsma, B.F.; Kegel, E.V. Strength Properties of Thermally Modified Softwoods and Its Relation to Polymeric Structural Wood Constituents. Ann. For. Sci. 2007, 64, 679–690. [Google Scholar] [CrossRef]
- Kozakiewicz, P.; Laskowska, A.; Drożdżek, M.; Zawadzki, J. Influence of Thermal Modification in Nitrogen Atmosphere on Physical and Technological Properties of European Wood Species with Different Structural Features. Coatings 2022, 12, 1663. [Google Scholar] [CrossRef]
- ISO 13061-1; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 1: Determination of Moisture Content for Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 13061-2; Physical and Mechanical Properties of Wood—Test Methods for Small ClearWood Specimens—Part 2: Determination of Density for Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2014.
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. NREL/TP-510-42618: Determination of Structural Carbohydrates and Lignin in Biomass; Laboratory Analytical Procedure (LAP); National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. NREL/TP-510-42622: Determination of Ash in Biomass; Laboratory Analytical Procedure (LAP); National Renewable Energy Laboratory: Golden, CO, USA, 2005. [Google Scholar]
- ISO 13061-3; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 3: Determination of Ultimate Strength in Static Bending. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 13061-4; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 4: Determination of Modulus of Elasticity in Static Bending. International Organization for Standardization: Geneva, Switzerland, 2014.
- EN 1534; Wood and Parquet Flooring—Determination of Resistance to Indentation (Brinell)—Test Method. iTeh Standards: Etobicoke, ON, Canada, 2000.
- Garrote, G.; Domínguez, H.; Parajó, J.C. Study on the Deacetylation of Hemicelluloses during the Hydrothermal Processing of Eucalyptus Wood. Holz Roh-Werkst. 2001, 59, 53–59. [Google Scholar] [CrossRef]
- Sivonen, H.; Maunu, S.L.; Sundholm, F.; Jämsä, S.; Viitaniemi, P. Magnetic Resonance Studies of Thermally Modified Wood. Holzforschung 2002, 56, 648–654. [Google Scholar] [CrossRef]
- Altgen, M.; Uimonen, T.; Rautkari, L. The Effect of De- and Re-Polymerization during Heat-Treatment on the Mechanical Behavior of Scots Pine Sapwood under Quasi-Static Load. Polym. Degrad. Stab. 2018, 147, 197–205. [Google Scholar] [CrossRef]
- Zaman, A.; Alén, R.; Kotilainen, R. Thermal Behaviour of Scots Pine (Pinus sylvestris) and Silver Birch (Betula pendula) at 200–230 °C. Wood Fiber Sci. 2000, 32, 138–143. [Google Scholar]
- Winandy, J.E. Relating Wood Chemistry and Strength: PART II. Fundamental Relationships between Changes in Wood Chemistry and Strength of Wood. Wood Fiber Sci. 2017, 49, 2–11. [Google Scholar]
- Biziks, V.; Andersons, B.; Beļkova, Ļ.; Kapača, E.; Militz, H. Changes in the Microstructure of Birch Wood after Hydrothermal Treatment. Wood Sci. Technol. 2013, 47, 717–735. [Google Scholar] [CrossRef]
- Biziks, V.; Van Den Bulcke, J.; Grinins, J.; Militz, H.; Andersons, B.; Andersone, I.; Dhaene, J.; Van Acker, J. Assessment of Wood Microstructural Changes after One-Stage Thermo-Hydro Treatment (THT) by Micro X-ray Computed Tomography. Holzforschung 2016, 70, 167–177. [Google Scholar] [CrossRef]
- Rautkari, L.; Honkanen, J.; Hill, C.A.S.; Ridley-Ellis, D.; Hughes, M. Mechanical and Physical Properties of Thermally Modified Scots Pine Wood in High Pressure Reactor under Saturated Steam at 120, 150 and 180 °C. Eur. J. Wood Prod. 2014, 72, 33–41. [Google Scholar] [CrossRef]
Treatment Regime | Tmax (°C) | Time at Tmax (min) | Initial Pressure (bar) | Max Pressure (bar) |
---|---|---|---|---|
B/150/120/5 | 150 | 120 | 5 | 10.2 |
B/160/60/4 | 160 | 60 | 4 | 11.8 |
B/160/60/5 | 160 | 60 | 5 | 14.2 |
B/160/90/3 | 160 | 90 | 3 | 10.0 |
B/160/90/4 | 160 | 90 | 4 | 12.0 |
B/160/120/4 | 160 | 120 | 4 | 12.6 |
B/170/30/3 | 170 | 30 | 3 | 12.7 |
B/170/30/4 | 170 | 30 | 4 | 13.0 |
B/170/30/6 | 170 | 30 | 6 | 16.9 |
B/170/60/4 | 170 | 60 | 4 | 13.2 |
Treatment Regime | Tmax (°C) | Time at Tmax (min) | Initial Pressure (bar) | Max Pressure (bar) |
---|---|---|---|---|
P/160/120/5 | 160 | 120 | 5 | 12.7 |
P/160/180/5 | 160 | 180 | 5 | 13.2 |
P/170/60/4 | 170 | 60 | 4 | 12.5 |
P/170/90/4 | 170 | 90 | 4 | 12.7 |
P/170/120/4 | 170 | 120 | 4 | 12.9 |
P/170/60/6 | 170 | 60 | 6 | 15.4 |
P/170/90/6 | 170 | 90 | 6 | 15.8 |
P/170/120/6 | 170 | 120 | 6 | 16.2 |
P/180/30/5 | 180 | 30 | 5 | 16.4 |
P/180/60/5 | 180 | 60 | 5 | 16.8 |
Treatment Regime | Mass Loss (%) | Chemical Components (%) | ||||
---|---|---|---|---|---|---|
Acetone Extractives | Lignin | Glucan | Xylan | Acetyl Groups | ||
Untreated | – | 1.9 ± 0.1 | 23.4 ± 0.2 | 39.3 ± 0.1 | 21.4 ± 0.1 | 4.7 ± 0.0 |
B/150/120/5 | 7.0 ± 2.3 | 4.5 ± 0.2 | 23.5 ± 0.1 | 39.9 ± 0.3 | 20.8 ± 0.1 | 3.9 ± 0.0 |
B/160/60/4 | 7.7 ± 2.7 | 4.0 ± 0.2 | 23.8 ± 0.1 | 41.2 ± 0.3 | 21.0 ± 0.3 | 4.2 ± 0.1 |
B/160/60/5 | 9.5 ± 3.1 | 6.7 ± 0.2 | 21.6 ± 0.2 | 41.4 ± 0.1 | 20.9 ± 0.1 | 3.4 ± 0.0 |
B/160/90/3 | 5.9 ± 2.2 | 6.5 ± 0.1 | 22.0 ± 0.1 | 41.5 ± 0.1 | 20.5 ± 0.1 | 3.5 ± 0.0 |
B/160/90/4 | 7.3 ± 2.9 | 6.5 ± 0.2 | 22.8 ± 0.1 | 41.5 ± 0.1 | 18.9 ± 0.1 | 3.4 ± 0.0 |
B/160/120/4 | 10.1 ± 1.7 | 12.6 ± 0.3 | 20.1 ± 0.1 | 44.2 ± 0.1 | 16.2 ± 0.1 | 2.4 ± 0.0 |
B/170/30/3 | 8.6 ± 2.6 | 7.9 ± 0.1 | 22.7 ± 0.1 | 40.7 ± 0.1 | 20.5 ± 0.1 | 3.2 ± 0.0 |
B/170/30/4 | 9.6 ± 2.8 | 6.1 ± 0.2 | 24.2 ± 0.1 | 42.5 ± 0.1 | 19.3 ± 0.1 | 3.2 ± 0.0 |
B/170/30/6 | 9.3 ± 2.9 | 8.3 ± 0.2 | 23.1 ± 0.1 | 41.6 ± 0.1 | 20.4 ± 0.1 | 3.3 ± 0.1 |
B/170/60/4 | 12.0 ± 2.2 | 9.6 ± 0.2 | 24.0 ± 0.1 | 43.7 ± 0.4 | 15.5 ± 0.3 | 2.4 ± 0.1 |
Treatment Regime | Mass Loss (%) | Chemical Components (%) | |||||
---|---|---|---|---|---|---|---|
Acetone Extractives | Lignin | Glucan | Xylan | Mannan | Acetyl Groups | ||
Untreated | – | 0.4 ± 0.1 | 27.6 ± 0.1 | 42.9 ± 0.2 | 6.3 ± 0.2 | 10.3 ± 0.1 | 1.6 ± 0.0 |
P/160/120/5 | 3.9 ± 0.9 | 1.8 ± 0.2 | 27.0 ± 0.7 | 45.6 ± 0.3 | 5.9 ± 0.1 | 11.7 ± 0.0 | 1.5 ± 0.0 |
P/160/180/5 | 4.7 ± 1.3 | 2.2 ± 0.2 | 28.9 ± 0.1 | 45.9 ± 0.1 | 5.3 ± 0.1 | 11.3 ± 0.1 | 1.3 ± 0.0 |
P/170/60/4 | 4.9 ± 1.0 | 2.4 ± 0.1 | 30.2 ± 0.1 | 43.1 ± 0.2 | 5.4 ± 0.1 | 12.6 ± 0.1 | 1.2 ± 0.0 |
P/170/90/4 | 6.6 ± 1.5 | 2.5 ± 0.2 | 29.1 ± 0.2 | 46.6 ± 0.2 | 5.4 ± 0.0 | 11.0 ± 0.1 | 1.3 ± 0.0 |
P/170/120/4 | 7.9 ± 1.3 | 2.9 ± 0.2 | 31.2 ± 0.2 | 45.9 ± 0.3 | 5.1 ± 0.1 | 10.1 ± 0.1 | 1.1 ± 0.0 |
P/170/60/6 | 6.3 ± 1.2 | 2.7 ± 0.1 | 29.1 ± 0.1 | 43.7 ± 0.0 | 5.7 ± 0.1 | 13.3 ± 0.1 | 1.3 ± 0.0 |
P/170/90/6 | 6.0 ± 1.3 | 2.8 ± 0.2 | 29.4 ± 0.1 | 44.5 ± 0.1 | 5.2 ± 0.0 | 11.0 ± 0.1 | 1.3 ± 0.0 |
P/170/120/6 | 7.8 ± 1.2 | 2.7 ± 0.1 | 29.5 ± 0.1 | 45.8 ± 0.2 | 5.5 ± 0.1 | 11.0 ± 0.0 | 1.3 ± 0.0 |
P/180/30/5 | 7.6 ± 1.6 | 3.3 ± 0.2 | 32.9 ± 0.1 | 44.6 ± 0.1 | 5.5 ± 0.1 | 10.2 ± 0.1 | 1.1 ± 0.0 |
P/180/60/5 | 9.0 ± 1.6 | 4.7 ± 0.2 | 31.4 ± 0.1 | 44.5 ± 0.2 | 5.0 ± 0.1 | 11.7 ± 0.2 | 1.0 ± 0.0 |
Treatment Regime | Density (kg×m−3) | MOR (MPa) | MOE (MPa) | Brinell Hardness (N×mm−2) | |
---|---|---|---|---|---|
Tangential Surface | Radial Surface | ||||
Untreated | 652 ± 18 | 124 ± 8 | 13,300 ± 1100 | 21.5 ± 1.0 | 19.1 ± 1.0 |
B/150/120/5 | 614 ± 49 | 105 ± 24 | 14,700 ± 1500 | 21.8 ± 1.9 | 17.4 ± 3.2 |
B/160/60/4 | 611 ± 32 | 86 ± 15 | 12,500 ± 1100 | 23.5 ± 2.3 | 18.4 ± 2.6 |
B/160/60/5 | 622 ± 22 | 100 ± 25 | 13,800 ± 1400 | 24.5 ± 2.0 | 20.4 ± 2.0 |
B/160/90/3 | 642 ± 33 | 93 ± 19 | 14,400 ± 1400 | 27.3 ± 2.9 | 20.7 ± 2.4 |
B/160/90/4 | 622 ± 16 | 110 ± 27 | 14,900 ± 1000 | 25.4 ± 2.2 | 18.9 ± 2.3 |
B/160/120/4 | 576 ± 47 | 72 ± 11 | 13,600 ± 1200 | 17.9 ± 2.4 | 15.4 ± 2.0 |
B/170/30/3 | 601 ± 16 | 98 ± 16 | 14,400 ± 700 | 22.6 ± 1.2 | 17.0 ± 1.4 |
B/170/30/4 | 581 ± 27 | 90 ± 20 | 13,700 ± 1100 | 22.0 ± 2.5 | 14.7 ± 2.6 |
B/170/30/6 | 632 ± 44 | 83 ± 20 | 15,100 ± 1200 | 24.9 ± 3.6 | 19.6 ± 2.6 |
B/170/60/4 | 509 ± 22 | 85 ± 24 | 14,400 ± 1800 | 17.0 ± 2.6 | 13.6 ± 2.6 |
Treatment Regime | Density (kg×m−3) | MOR (MPa) | MOE (MPa) | Brinell Hardness (N×mm−2) | |
---|---|---|---|---|---|
Tangential Surface | Radial Surface | ||||
Untreated | 581 ± 22 | 98 ± 5 | 12,400 ± 1000 | 13.8 ± 1.2 | 14.3 ± 0.9 |
P/160/120/5 | 578 ± 17 | 85 ± 16 | 11,800 ± 900 | 16.5 ± 2.0 | 18.9 ± 1.6 |
P/160/180/5 | 570 ± 43 | 93 ± 15 | 12,700 ± 1300 | 17.0 ± 2.7 | 18.7 ± 4.0 |
P/170/60/4 | 549 ± 44 | 96 ± 18 | 13,300 ± 1100 | 13.5 ± 1.7 | 16.4 ± 2.6 |
P/170/90/4 | 577 ± 19 | 83 ± 18 | 12,100 ± 700 | 13.5 ± 1.7 | 21.3 ± 3.7 |
P/170/120/4 | 560 ± 12 | 70 ± 18 | 11,200 ± 1100 | 13.5 ± 1.6 | 20.9 ± 3.1 |
P/170/60/6 | 581 ± 10 | 88 ± 18 | 11,700 ± 800 | 14.6 ± 1.2 | 20.8 ± 2.0 |
P/170/90/6 | 547 ± 25 | 78 ± 18 | 11,200 ± 900 | 14.4 ± 3.2 | 20.3 ± 3.5 |
P/170/120/6 | 541 ± 19 | 67 ± 19 | 10,000 ± 700 | 13.1 ± 0.9 | 18.4 ± 2.1 |
P/180/30/5 | 555 ± 35 | 79 ± 14 | 12,400 ± 1100 | 16.4 ± 1.7 | 18.6 ± 2.2 |
P/180/60/5 | 564 ± 52 | 75 ± 21 | 11,800 ± 1800 | 14.0 ± 4.4 | 17.5 ± 4.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grinins, J.; Sosins, G.; Brazdausks, P.; Zicans, J. Chemical Composition and Mechanical Properties of Wood after Thermal Modification in Closed Process under Pressure in Nitrogen. Materials 2024, 17, 1468. https://doi.org/10.3390/ma17071468
Grinins J, Sosins G, Brazdausks P, Zicans J. Chemical Composition and Mechanical Properties of Wood after Thermal Modification in Closed Process under Pressure in Nitrogen. Materials. 2024; 17(7):1468. https://doi.org/10.3390/ma17071468
Chicago/Turabian StyleGrinins, Juris, Guntis Sosins, Prans Brazdausks, and Janis Zicans. 2024. "Chemical Composition and Mechanical Properties of Wood after Thermal Modification in Closed Process under Pressure in Nitrogen" Materials 17, no. 7: 1468. https://doi.org/10.3390/ma17071468
APA StyleGrinins, J., Sosins, G., Brazdausks, P., & Zicans, J. (2024). Chemical Composition and Mechanical Properties of Wood after Thermal Modification in Closed Process under Pressure in Nitrogen. Materials, 17(7), 1468. https://doi.org/10.3390/ma17071468