Non-Conventional Wing Structure Design with Lattice Infilled through Design for Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Structural Geometry of the Wing
2.2. Material
2.3. Lattice Configuration and Optimization Framework
2.4. Numerical Simulation
3. Results and Discussion
3.1. Lattice Optimum Configuration and Weight Saving
3.2. Maximum Wing-Tip Deflection
3.3. Maximum Stress (von Mises) Distribution
3.4. Stress Concentration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, G.K.; Ranjan, P.; James, K.A. 3D topology optimization of aircraft wings with conventional and non-conventional layouts: A comparative study. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022; p. 3725. [Google Scholar]
- Kouach, M. Methods for Modelling Lattice Structures. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2019. [Google Scholar]
- Zhang, B.; Goel, A.; Ghalsasi, O.; Anand, S.J. CAD-based design and pre-processing tools for additive manufacturing. J. Manuf. Syst. 2019, 52, 227–241. [Google Scholar] [CrossRef]
- Tariq, U.; Mazhar, F. Static Structural Analysis of Fighter Aircraft’s Wing Spars. In Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12–16 January 2021; pp. 221–243. [Google Scholar]
- De, S.; Jrad, M.; Kapania, R.K. Structural optimization of internal structure of aircraft wings with curvilinear spars and ribs. J. Aircr. 2019, 56, 707–718. [Google Scholar] [CrossRef]
- Katrňák, T.; Juračka, J. Topometry FEM optimization of the wing structure of the transport aircraft. Aviation 2017, 21, 29–34. [Google Scholar] [CrossRef]
- Stanford, B.; Beran, P. Optimal structural topology of a platelike wing for subsonic aeroelastic stability. J. Aircr. 2011, 48, 1193–1203. [Google Scholar] [CrossRef]
- Brampton, C.; Kim, H.; Cunningham, J. Level set topology optimisation of aircraft wing considering aerostructural interaction. In Proceedings of the 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Indianapolis, Indiana, 17–19 September 2012; p. 5484. [Google Scholar]
- Schmit, L.A. Structural synthesis-its genesis and development. AIAA J. 1981, 19, 1249–1263. [Google Scholar] [CrossRef]
- Haftka, R.T.; Starnes, J.H., Jr.; Barton, F.W.; Dixon, S.C. Comparison of two types of structural optimization procedures for flutter requirements. AIAA J. 1975, 13, 1333–1339. [Google Scholar] [CrossRef]
- Haftka, R.T. Optimization of flexible wing structures subject to strength and induced drag constraints. AIAA J. 1977, 15, 1101–1106. [Google Scholar] [CrossRef]
- Starnes, J.H., Jr.; Haftka, R.T. Preliminary design of composite wings for buckling, strength, and displacement constraints. J. Aircr. 1979, 16, 564–570. [Google Scholar] [CrossRef]
- Kennedy, G.J.; Martins, J.R. A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures. Finite Elem. Anal. Des. 2014, 87, 56–73. [Google Scholar] [CrossRef]
- Brooks, T.R.; Martins, J.R.; Kennedy, G.J. High-fidelity aerostructural optimization of tow-steered composite wings. J. Fluids Struct. 2019, 88, 122–147. [Google Scholar] [CrossRef]
- Liu, Q.; Jrad, M.; Mulani, S.B.; Kapania, R.K. Global/local optimization of aircraft wing using parallel processing. AIAA J. 2016, 54, 3338–3348. [Google Scholar] [CrossRef]
- Locatelli, D.; Yeilaghi Tamijani, A.; Mulani, S.B.; Liu, Q.; Kapania, R.K. Multidisciplinary optimization of supersonic wing structures using curvilinear spars and ribs (SpaRibs). In Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, MA, USA, 8–11 April 2013; p. 1931. [Google Scholar]
- Robinson, J.H.; Doyle, S.; Ogawa, G.; Baker, M.; De, S.; Jrad, M.; Kapania, R.K. Aeroelastic optimization of wing structure using curvilinear spars and ribs (sparibs). In Proceedings of the 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Washington, DC, USA, 13–17 June 2016; p. 3994. [Google Scholar]
- Locatelli, D.; Mulani, S.B.; Kapania, R.K. Wing-box weight optimization using curvilinear spars and ribs (SpaRibs). J. Aircr. 2011, 48, 1671–1684. [Google Scholar] [CrossRef]
- Aage, N.; Andreassen, E.; Lazarov, B.S.; Sigmund, O. Giga-voxel computational morphogenesis for structural design. Nature 2017, 550, 84–86. [Google Scholar] [CrossRef]
- Félix, L.; Gomes, A.A.; Suleman, A. Topology optimization of the internal structure of an aircraft wing subjected to self-weight load. Eng. Optim. 2020, 52, 1119–1135. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, W.; Quan, D.; Shi, G.; Tang, L.; Hou, Y.; Breitkopf, P.; Zhu, J.; Gao, T. From topology optimization design to additive manufacturing: Today’s success and tomorrow’s roadmap. Arch. Comput. Methods Eng. 2020, 27, 805–830. [Google Scholar] [CrossRef]
- James, K.A.; Kennedy, G.J.; Martins, J.R. Concurrent aerostructural topology optimization of a wing box. Comput. Struct. 2014, 134, 1–17. [Google Scholar] [CrossRef]
- Høghøj, L.C.; Conlan-Smith, C.; Sigmund, O.; Andreasen, C.S. Simultaneous shape and topology optimization of wings. Struct. Multidiscip. Optim. 2023, 66, 116. [Google Scholar] [CrossRef]
- Magerramova, L.; Volkov, M.G.; Afonin, A.; Svinareva, M.; Kalinin, D.A. Application of light lattice structures for gas turbine engine fan blades. In Proceedings of the 31st Congress of the International Council of the Aeronautical Sciences, ICAS, Belo Horizonte, Brazil, 9–14 September 2018. [Google Scholar]
- Moon, S.K.; Tan, Y.E.; Hwang, J.; Yoon, Y.J. Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures. Int. J. Precis. Eng. Manuf.-Green Technol. 2014, 1, 223–228. [Google Scholar] [CrossRef]
- Feng, J.; Fu, J.; Lin, Z.; Shang, C.; Li, B. A review of the design methods of complex topology structures for 3D printing. Vis. Comput. Ind. Biomed. Art 2018, 1, 5. [Google Scholar] [CrossRef] [PubMed]
- Tsushima, N.; Higuchi, R.; Arizono, H.; Tamayama, M. Multi-Scale Aeroelastic Analysis of Wings with Lattice-Based Mechanical Metamaterials. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11–15 & 19–21 January 2021; p. 1507. [Google Scholar]
- Luo, C.; Han, C.Z.; Zhang, X.Y.; Zhang, X.G.; Ren, X.; Xie, Y.M. Design, manufacturing and applications of auxetic tubular structures: A review. Thin-Walled Struct. 2021, 163, 107682. [Google Scholar] [CrossRef]
- Andersen, M.N.; Wang, F.; Sigmund, O. On the competition for ultimately stiff and strong architected materials. Mater. Des. 2021, 198, 109356. [Google Scholar] [CrossRef]
- Budholiya, S.; Bhat, A.; Raj, S.A.; Hameed Sultan, M.T.; Md Shah, A.U.; Basri, A.A. State of the art review about bio-inspired design and applications: An aerospace perspective. Appl. Sci. 2021, 11, 5054. [Google Scholar] [CrossRef]
- Nazir, A.; Abate, K.M.; Kumar, A.; Jeng, J.-Y.J.M. A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. Int. J. Adv. Manuf. Technol. 2019, 104, 3489–3510. [Google Scholar] [CrossRef]
- Plocher, J.; Panesar, A.J.M. Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures. Mater. Des. 2019, 183, 108164. [Google Scholar] [CrossRef]
- Mandolini, M.; Pradel, P.; Cicconi, P. Design for additive manufacturing: Methods and tools. Appl. Sci. 2022, 12, 6548. [Google Scholar] [CrossRef]
- Hou, W.; He, P.; Yang, Y.; Sang, L. Crashworthiness optimization of crash box with 3D-printed lattice structures. Int. J. Mech. Sci. 2023, 247, 108198. [Google Scholar] [CrossRef]
- Montemurro, M.; Bertolino, G.; Panettieri, E. Topology optimisation of architected cellular materials from additive manufacturing: Analysis, design, and experiments. In Structures; Elsevier: Amsterdam, The Netherlands, 2023; pp. 2220–2239. [Google Scholar]
- Lan, T.; Do, T.; Al-Ketan, O.; Fox, K.; Tran, P. Concurrent multiscale topology optimisation towards design and additive manufacturing of bio-mimicking porous structures. Virtual Phys. Prototyp. 2023, 18, e2150867. [Google Scholar] [CrossRef]
- Bronder, S.; Adorna, M.; Fíla, T.; Koudelka, P.; Falta, J.; Jiroušek, O.; Jung, A. Hybrid auxetic structures: Structural optimization and mechanical characterization. Adv. Eng. Mater. 2021, 23, 2001393. [Google Scholar] [CrossRef]
- Zhao, M.; Ji, B.; Zhang, D.Z.; Li, H.; Zhou, H. Design and mechanical performances of a novel functionally graded sheet-based lattice structure. Addit. Manuf. 2022, 52, 102676. [Google Scholar] [CrossRef]
- Sharma, D.; Hiremath, S.S. In-plane elastic properties of the Euplectella aspergillum inspired lattice structures: Analytic modelling, finite element modelling and experimental validation. In Structures; Elsevier: Amsterdam, The Netherlands, 2023; pp. 962–975. [Google Scholar]
- Yin, H.; Liu, Z.; Dai, J.; Wen, G.; Zhang, C. Crushing behavior and optimization of sheet-based 3D periodic cellular structures. Compos. Part B Eng. 2020, 182, 107565. [Google Scholar] [CrossRef]
- Acanfora, V.; Sellitto, A.; Russo, A.; Zarrelli, M.; Riccio, A. Experimental investigation on 3D printed lightweight sandwich structures for energy absorption aerospace applications. Aerosp. Sci. Technol. 2023, 137, 108276. [Google Scholar] [CrossRef]
- Vasiliev, V.; Razin, A. Filament-wound Anisogrid composite lattice shear beams for airframe structures. In Proceedings of the International Symposium on Manufacturing Technology for Composite Aircraft Structures, Braunschweig, Germany, 1 January 2004. [Google Scholar]
- Vasiliev, V.; Razin, A. Anisogrid composite lattice structures for spacecraft and aircraft applications. Compos. Struct. 2006, 76, 182–189. [Google Scholar] [CrossRef]
- Vasiliev, V.V.; Barynin, V.A.; Razin, A.F. Anisogrid composite lattice structures–Development and aerospace applications. Compos. Struct. 2012, 94, 1117–1127. [Google Scholar] [CrossRef]
- Opgenoord, M.M.; Willcox, K.E. Design for additive manufacturing: Cellular structures in early-stage aerospace design. Struct. Multidiscip. Optim. 2019, 60, 411–428. [Google Scholar] [CrossRef]
- Fasel, U.; Keidel, D.; Baumann, L.; Cavolina, G.; Eichenhofer, M.; Ermanni, P. Composite additive manufacturing of morphing aerospace structures. Manuf. Lett. 2020, 23, 85–88. [Google Scholar] [CrossRef]
- Bühring, J.; Nuño, M.; Schröder, K.-U. Additive manufactured sandwich structures: Mechanical characterization and usage potential in small aircraft. Aerosp. Sci. Technol. 2021, 111, 106548. [Google Scholar] [CrossRef]
- Spadoni, A.; Ruzzene, M. Numerical and experimental analysis of the static compliance of chiral truss-core airfoils. J. Mech. Mater. Struct. 2007, 2, 965–981. [Google Scholar] [CrossRef]
- Magna Parva. Thermal Protection System. 2020. Available online: https://magnaparva.com/ (accessed on 12 December 2023).
- Jenett, B.; Calisch, S.; Cellucci, D.; Cramer, N.; Gershenfeld, N.; Swei, S.; Cheung, K.C. Digital morphing wing: Active wing shaping concept using composite lattice-based cellular structures. Soft Robot. 2017, 4, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Vigliotti, A.; Pasini, D. Analysis and design of lattice materials for large cord and curvature variations in skin panels of morphing wings. Smart Mater. Struct. 2015, 24, 037006. [Google Scholar] [CrossRef]
- Alsaidi, B.; Joe, W.Y.; Akbar, M. Computational analysis of 3D lattice structures for skin in real-scale camber morphing aircraft. Aerosp. Sci. Technol. 2019, 6, 79. [Google Scholar] [CrossRef]
- Next-Generation Engineering Design Software | nTop. 2023. Available online: https://www.ntop.com/ (accessed on 12 December 2023).
- Schrenk, O. A simple approximation method for obtaining the spanwise lift distribution. Aeronaut. J. 1941, 45, 331–336. [Google Scholar] [CrossRef]
- Tahir, N.M.; Alhaji, A.U.; Abdullahi, I.; Tahşr, N.; Alhaji, A.; Abdullahi, I. Performance evaluation of unmanned aerial vehicle wing made from sterculiasetigeradelile fiber and pterocarpuserinaceus wood dust epoxy composite using finite element method abaqus and structural testing. Res. Eng. Struct. Mater. 2022, 8, 675–694. [Google Scholar] [CrossRef]
- Corke, T.C. Design of Aircraft; Prentice Hall: Hoboken, NJ, USA, 2003. [Google Scholar]
- Agency, E.A.S.; Easa, C.-V. Certification Specifications, CS-VLA; European Union Aviation Safety Agency: Cologne, Germany, 2009. [Google Scholar]
- Agency, E.A.S. EASA, Certification Specifications, CS-23; European Aviation Safety Agency: Cologne, Germany, 2015. [Google Scholar]
- Glīzde, N. Plotting the flight envelope of an unmanned aircraft system air vehicle. Transp. Aerosp. Eng. 2017, 4, 80–87. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones 2022, 6, 147. [Google Scholar] [CrossRef]
- Sadraey, M. Aircraft Design: A Systems Engineering Approach; Wiley: Weinheim, Germany, 2012; 808p, ISBN 9781118352809. [Google Scholar]
- Zhu, L.; Li, N.; Childs, P. Light-weighting in aerospace component and system design. Propuls. Power Res. 2018, 7, 103–119. [Google Scholar] [CrossRef]
- Bharath, C.; Shamanth, V.; Hemanth, K. Studies on mechanical behaviour of AlSi10Mg alloy produced by selective laser melting and A360 alloy by die casting. Mater. Today 2021, 45, 78–81. [Google Scholar] [CrossRef]
- Flower, H.M. High Performance Materials in Aerospace; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Froes, F.; Boyer, R.; Dutta, B.; Hills, A. Additive manufacturing for aerospace applications—Part II: Fabrication of aerospace components using additive manufacturing has matured to the point where part microstructures and mechanical properties compare well with those of conventionally produced material. Adv. Mater. Process. 2017, 175, 18–23. [Google Scholar]
- Peters, M.; Leyens, C. Aerospace and space materials. Mater. Sci. Eng 2009, 3, 1–11. [Google Scholar]
- Soltani, N.; Bahrami, A.; Pech-Canul, M.I. The effect of Ti on mechanical properties of extruded in-situ Al-15 pct Mg 2 Si composite. Metall. Mater. Trans. A 2013, 44, 4366–4373. [Google Scholar] [CrossRef]
- Soltani, N.; Nodooshan, H.J.; Bahrami, A.; Pech-Canul, M.; Liu, W.; Wu, G. Effect of hot extrusion on wear properties of Al–15 wt.% Mg2Si in situ metal matrix composites. Mater. Des. 2014, 53, 774–781. [Google Scholar] [CrossRef]
- Li, Z.-H.; Nie, Y.-F.; Liu, B.; Kuai, Z.-Z.; Zhao, M.; Liu, F. Mechanical properties of AlSi10Mg lattice structures fabricated by selective laser melting. Mater. Des. 2020, 192, 108709. [Google Scholar] [CrossRef]
- Gebhardt, U.; Gustmann, T.; Giebeler, L.; Hirsch, F.; Hufenbach, J.K.; Kästner, M. Additively manufactured AlSi10Mg lattices–Potential and limits of modelling as-designed structures. Mater. Des. 2022, 220, 110796. [Google Scholar] [CrossRef]
- Maskery, I.; Aboulkhair, N.; Aremu, A.; Tuck, C.; Ashcroft, I.; Wildman, R.D.; Hague, R. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting. Mater. Sci. Eng. A 2016, 670, 264–274. [Google Scholar] [CrossRef]
- Yang, L.; Yan, C.; Han, C.; Chen, P.; Yang, S.; Shi, Y. Mechanical response of a triply periodic minimal surface cellular structures manufactured by selective laser melting. Int. J. Mech. Sci. 2018, 148, 149–157. [Google Scholar] [CrossRef]
- Sos, M.; Meyer, G.; Durst, K.; Mittelstedt, C.; Bruder, E. Microstructure and mechanical properties of additively manufactured AlSi10Mg lattice structures from single contour exposure. Mater. Des. 2023, 227, 111796. [Google Scholar] [CrossRef]
- Acanfora, V.; Castaldo, R.; Riccio, A. On the effects of core microstructure on energy absorbing capabilities of sandwich panels intended for additive manufacturing. Mater. Des. 2022, 15, 1291. [Google Scholar] [CrossRef] [PubMed]
- ASM Aerospace Specification Metals Inc. 2023. Available online: https://asm.matweb.com/ (accessed on 12 December 2023).
- Park, K.-M.; Min, K.-S.; Roh, Y.-S. Design Optimization of Lattice Structures under Compression: Study of Unit Cell Types and Cell Arrangements. Materials 2022, 15, 97. [Google Scholar] [CrossRef] [PubMed]
- Dumas, M.; Terriault, P.; Brailovski, V. Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials. Mater. Des. 2017, 121, 383–392. [Google Scholar] [CrossRef]
- De Aquino, D.; Maskery, I.; Longhitano, G.; Jardini, A.; Del Conte, E. Investigation of load direction on the compressive strength of additively manufactured triply periodic minimal surface scaffolds. Int. J. Adv. Manuf. Technol. 2020, 109, 771–779. [Google Scholar] [CrossRef]
- Cutolo, A.; Engelen, B.; Desmet, W.; Van Hooreweder, B. Mechanical properties of diamond lattice Ti–6Al–4V structures produced by laser powder bed fusion: On the effect of the load direction. J. Mech. Behav. Biomed. Mater. 2020, 104, 103656. [Google Scholar] [CrossRef]
- Moreno Nieto, D.; Moreno Sánchez, D. Design for additive manufacturing: Tool review and a case study. Appl. Sci. 2021, 11, 1571. [Google Scholar] [CrossRef]
- Jongerius, S.; Lentink, D. Structural analysis of a dragonfly wing. Exp. Mech. 2010, 50, 1323–1334. [Google Scholar] [CrossRef]
- Wing for Tomorrow. 2022. Available online: https://www.airbus.com/en/newsroom/press-releases/2022-07-airbus-completes-assembly-of-first-future-wing-prototype (accessed on 15 December 2023).
Specification | Value |
---|---|
Wingspan (b) [mm] | 200 |
Chord Length (Cr) Root [mm] | 50 |
Chord Length (Ct) Tip [mm] | 25 |
Area of the Wing (s) [m2] | 0.0075 |
Aspect Ratio (A) | 5.3 |
Taper Ratio (λ) | 0.5 |
Maximum Weight of the Fixed Wing UAV [kg] | 5 |
Maximum Load Factor (n) | 5.7 |
Cruise Altitude (H) [m] | 120 |
Property | Value |
---|---|
Young’s modulus [MPa] | 68,000 |
Density [kg/m3] | 2650 |
Poisson’s ratio | 0.33 |
Tensile strength (Yield) [MPa] | 251 |
BCC | FCC | Fluorite | Kelvin | Octet | |
---|---|---|---|---|---|
Total No. of Nodes | 791,639 | 282,432 | 791,639 | 1,131,328 | 6,321,189 |
Total No. of elements | 337,513 | 426,279 | 337,513 | 495,880 | 4,017,422 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.; Acanfora, V.; Riccio, A. Non-Conventional Wing Structure Design with Lattice Infilled through Design for Additive Manufacturing. Materials 2024, 17, 1470. https://doi.org/10.3390/ma17071470
Khan N, Acanfora V, Riccio A. Non-Conventional Wing Structure Design with Lattice Infilled through Design for Additive Manufacturing. Materials. 2024; 17(7):1470. https://doi.org/10.3390/ma17071470
Chicago/Turabian StyleKhan, Numan, Valerio Acanfora, and Aniello Riccio. 2024. "Non-Conventional Wing Structure Design with Lattice Infilled through Design for Additive Manufacturing" Materials 17, no. 7: 1470. https://doi.org/10.3390/ma17071470
APA StyleKhan, N., Acanfora, V., & Riccio, A. (2024). Non-Conventional Wing Structure Design with Lattice Infilled through Design for Additive Manufacturing. Materials, 17(7), 1470. https://doi.org/10.3390/ma17071470