Decomposition Kinetics and Lifetime Estimation of Thermoplastic Composite Materials Reinforced with rCFRP
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plasma Treatment
2.3. Wettability Measurement
2.4. Manufacturing of Composite Materials
2.5. Thermogravimetric Analysis (TGA)
Kinetic Models Utilized to Calculate Decomposition Energy and Lifespan in Service
3. Results
3.1. Decomposition Kinetics
3.2. Estimation of the Useful Life of Composite Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adams, R.D. 50 Years in Carbon Fibre, 60 Years in Composites. In The Structural Integrity of Carbon Fiber Composites: Fifty Years of Progress and Achievement of the Science, Development, and Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–28. [Google Scholar]
- Zhang, J.; Lin, G.; Vaidya, U.; Wang, H. Past, present and future prospective of global carbon fibre composite developments and applications. Compos. Part B Eng. 2023, 250, 110463. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.; Chen, H.; Han, L.; Yin, X.; Fu, Q.; Sun, J. Ultra-high temperature performance of carbon fiber composite reinforced by HfC nanowires: A promising lightweight composites for aerospace engineering. Compos. Part B Eng. 2023, 250, 110453. [Google Scholar] [CrossRef]
- Lavayen-Farfan, D.; Butenegro-Garcia, J.A.; Boada, M.J.L.; Martinez-Casanova, M.A.; Rodriguez-Hernandez, J.A. Theoretical and experimental study of the bending collapse of partially reinforced CFRP–Steel square tubes. Thin-Walled Struct. 2022, 177, 109457. [Google Scholar] [CrossRef]
- Galvez, P.; Quesada, A.; Martinez, M.A.; Abenojar, J.; Boada, M.J.L.; Diaz, V. Study of the behaviour of adhesive joints of steel with CFRP for its application in bus structures. Compos. Part B Eng. 2017, 129, 41–46. [Google Scholar] [CrossRef]
- Wang, Y.; Li, A.; Zhang, S.; Guo, B.; Niu, D. A review on new methods of recycling waste carbon fiber and its application in construction and industry. Constr. Build. Mater. 2023, 367, 130301. [Google Scholar] [CrossRef]
- Yazdanbakhsh, A.; Bank, L.C. A critical review of research on reuse of mechanically recycled FRP production and end-of-life waste for construction. Polymers 2014, 6, 1810–1826. [Google Scholar] [CrossRef]
- Hiremath, N.; Young, S.; Ghossein, H.; Penumadu, D.; Vaidya, U.; Theodore, M. Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications. Compos. Part B Eng. 2020, 198, 108156. [Google Scholar] [CrossRef]
- Rubino, F.; Nisticò, A.; Tucci, F.; Carlone, P. Marine application of fiber reinforced composites: A review. J. Mar. Sci. Eng. 2020, 8, 26. [Google Scholar] [CrossRef]
- Loos, A.C.; Springer, G.S. Curing of epoxy matrix composites. J. Compos. Mater. 1983, 17, 135–169. [Google Scholar] [CrossRef]
- Vargas, M.A.; Sachsenheimer, K.; Guthausen, G. In-situ investigations of the curing of a polyester resin. Polym. Test. 2012, 31, 127–135. [Google Scholar] [CrossRef]
- Grigore, M.E. Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling 2017, 2, 24. [Google Scholar] [CrossRef]
- Chen, C.-H.; Chiang, C.-L.; Wang, J.-X.; Shen, M.-Y. A circular economy study on the characterization and thermal properties of thermoplastic composite created using regenerated carbon fiber recycled from waste thermoset CFRP bicycle part as reinforcement. Compos. Sci. Technol. 2022, 230, 109761. [Google Scholar] [CrossRef]
- Almushaikeh, A.M.; Alaswad, S.O.; Alsuhybani, M.S.; AlOtaibi, B.M.; Alarifi, I.M.; Alqahtani, N.B.; Aldosari, S.M.; Alsaleh, S.S.; Haidyrah, A.S.; Alolyan, A.A.; et al. Manufacturing of carbon fiber reinforced thermoplastics and its recovery of carbon fiber: A review. Polym. Test. 2023, 108029. [Google Scholar] [CrossRef]
- Alshammari, B.A.; Alsuhybani, M.S.; Almushaikeh, A.M.; Alotaibi, B.M.; Alenad, A.M.; Alqahtani, N.B.; Alharbi, A.G. Comprehensive review of the properties and modifications of carbon fiber-reinforced thermoplastic composites. Polymers 2021, 13, 2474. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, M.; Abenojar, J.; Martínez, M.A. Comparative characterization of hot-pressed polyamide 11 and 12, Mechanical, thermal and durability properties. Polymers 2021, 13, 3553. [Google Scholar] [CrossRef]
- Butenegro, J.A.; Bahrami, M.; Abenojar, J.; Martínez, M.Á. Recent progress in carbon fiber reinforced polymers recycling: A review of recycling methods and reuse of carbon fibers. Materials 2021, 14, 6401. [Google Scholar] [CrossRef] [PubMed]
- Cooney, J.; Day, M.; Wiles, D. Thermal degradation of poly (ethylene terephthalate): A kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 1983, 28, 2887–2902. [Google Scholar] [CrossRef]
- Farivar, F.; Yap, P.L.; Karunagaran, R.U.; Losic, D. Thermogravimetric analysis (TGA) of graphene materials: Effect of particle size of graphene, graphene oxide and graphite on thermal parameters. J. Carbon Res. 2021, 7, 41. [Google Scholar] [CrossRef]
- Amin, M.S.; Molin, T.E.; Tampubolon, C.; Kranbuehl, D.E.; Schniepp, H.C. Boron nitride nanotube impurity detection and purity verification. Chem. Mater. 2020, 32, 9090–9097. [Google Scholar] [CrossRef]
- Dwivedi, K.K.; Karmakar, M.; Chatterjee, P. Thermal degradation, characterization and kinetic modeling of different particle size coal through TGA. Therm. Sci. Eng. Prog. 2020, 18, 100523. [Google Scholar] [CrossRef]
- Mafamadi, M.; Sadare, O.; Bada, S.; Ayeni, A.; Daramola, M. (Eds.) Mathematical Modelling and Kinetics of Thermal Decomposition of Corn Stover Using Thermogravimetry (TGA-DTG) Technique; AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2022. [Google Scholar]
- Saadatkhah, N.; Carillo Garcia, A.; Ackermann, S.; Leclerc, P.; Latifi, M.; Samih, S.; Patience, G.S.; Chaouki, J. Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. Can. J. Chem. Eng. 2020, 98, 34–43. [Google Scholar] [CrossRef]
- Yang, J.; Miranda, R.; Roy, C. Using the DTG curve fitting method to determine the apparent kinetic parameters of thermal decomposition of polymers. Polym. Degrad. Stab. 2001, 73, 455–461. [Google Scholar] [CrossRef]
- Flynn, J. A critique of lifetime prediction of polymers by thermal analysis. J. Therm. Anal. Calorim. 1995, 44, 499–512. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Yu, B.; Till, V.; Thomas, K. Modeling of thermo-physical properties for FRP composites under elevated and high temperature. Compos. Sci. Technol. 2007, 67, 3098–3109. [Google Scholar] [CrossRef]
- Friedman, H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 1964, 6, 183–195. [Google Scholar] [CrossRef]
- Ozawa, T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J. Kinetic parameters from thermogravimetric data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, R. Thermal decomposition kinetics of basalt fiber-reinforced wood polymer composites. Polymers 2020, 12, 2283. [Google Scholar] [CrossRef]
- Enciso, B.; Abenojar, J.; Aparicio, G.; Martínez, M. Decomposition kinetics and lifetime estimation of natural fiber reinforced composites: Influence of plasma treatment and fiber type. J. Ind. Text. 2021, 51, 594–610. [Google Scholar] [CrossRef]
- Vyazovkin, S. A unified approach to kinetic processing of nonisothermal data. Int. J. Chem. Kinet. 1996, 28, 95–101. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Wight, C. Kinetics in solids. Annu. Rev. Phys. Chem. 1997, 48, 125–149. [Google Scholar] [CrossRef] [PubMed]
- Sewry, J.D.; Brown, M.E. “Model-free” kinetic analysis? Thermochim. Acta 2002, 390, 217–225. [Google Scholar] [CrossRef]
- Sihn, S.; Ehlert, G.J.; Roy, A.K.; Vernon, J.P. Identifying unified kinetic model parameters for thermal decomposition of polymer matrix composites. J. Compos. Mater. 2019, 53, 2875–2890. [Google Scholar] [CrossRef]
- Batista, N.L.; Costa, M.L.; Iha, K.; Botelho, E.C. Thermal degradation and lifetime estimation of poly (ether imide)/carbon fiber composites. J. Thermoplast. Compos. Mater. 2015, 28, 265–274. [Google Scholar] [CrossRef]
- Liao, Y.; Li, R.; Shen, C.; Gong, B.; Yin, F.; Wang, L. A Service Life Prediction Method of Stranded Carbon Fiber Composite Core Conductor for Overhead Transmission Lines. Polymers 2022, 14, 4431. [Google Scholar] [CrossRef] [PubMed]
- Product Data Sheet: Pultruded Carbon Fibre Plates for Structural Strengthenin as Part pf the SIKA® CARBODUR® System; SIKA®: Baar, Switzerland, 2018.
- Owens, D.K.; Wendt, R. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Heng, J.Y.; Pearse, D.F.; Thielmann, F.; Lampke, T.; Bismarck, A. Methods to determine surface energies of natural fibres: A review. Compos. Interfaces 2007, 14, 581–604. [Google Scholar] [CrossRef]
- Blaine, R.L.; Kissinger, H.E. Homer Kissinger and the Kissinger equation. Thermochim. Acta 2012, 540, 1–6. [Google Scholar] [CrossRef]
- Toop, D.J. Theory of life testing and use of thermogravimetric analysis to predict the thermal life of wire enamels. IEEE Trans. Electr. Insul. 1971, 2–14. [Google Scholar] [CrossRef]
- Florez, T.A.; Aparicio, G.M. Thermal characterization and lifetime estimation of the humus lombricospt. Am. J. Anal. Chem. 2014, 5, 45–49. [Google Scholar] [CrossRef]
Polyamides/Composites | PA | 2CF | CF + EP | CF + EP LPP | |
---|---|---|---|---|---|
Td (°C) | PA11 | 426 ± 8 | 431 ± 8 | 429 ± 8 | 426 ± 9 |
PA12 | 454 ± 10 | 462 ± 8 | 465 ± 7 | 463 ± 11 |
Polyamides/Composites | PA | 2CF | CF+EP | CF+EP LPP | |
---|---|---|---|---|---|
Ed (kJ/mol) | PA11 | 290.32 | 288.50 | 248.16 | 283.11 |
PA12 | 241.89 | 237.66 | 261.53 | 244.26 |
Applied Kinetics: Conversion | ||||||||
---|---|---|---|---|---|---|---|---|
Material | α (%) | Time | Temperature (°C) | |||||
25 | 50 | 100 | 150 | 200 | 300 | |||
PA11 | 5 | min | 3.48 × 1023 | 1.30 × 1021 | 6.95 × 1017 | 1.85 × 1015 | 4.47 × 1010 | 7255 |
PA11_2CF | 1.17 × 1020 | 3.67 × 1017 | 3.64 × 1013 | 3.18 × 1010 | 3.82 × 107 | 1090 | ||
PA11_CF + EP | 2.70 × 1016 | 3.98 × 1013 | 6.54 × 109 | 8.81 × 106 | 5.17 × 104 | 127 | ||
PA11_CF + EP LPP | 6.18 × 1024 | 1.63 × 1022 | 8.62 × 1016 | 4.04 × 1012 | 1.79 × 109 | 21,180 | ||
PA12 | 8.95 × 1018 | 3.90 × 1016 | 6.56 × 1012 | 8.61 × 109 | 4.59 × 107 | 20,240 | ||
PA12_2CF | 9.54 × 1025 | 6.71 × 1023 | 2.65 × 1018 | 1.69 × 1014 | 5.95 × 1010 | 79,100 | ||
PA12_CF + EP | 1.05 × 1018 | 1.78 × 1015 | 7.79 × 1010 | 1.67 × 105 | 4.60 × 102 | 21,200 | ||
PA12_CF + EP LPP | 1.49 × 1025 | 1.08 × 1022 | 9.71 × 1016 | 1.36 × 1013 | 1.24 × 1010 | 119,000 |
Polyamides/Composites | PA | 2CF | CF + EP | CF + EP LPP | |
---|---|---|---|---|---|
Ed (kJ/mol) | PA11 | 261.08 | 231.94 | 196.73 | 214.97 |
PA12 | 303.85 | 232.96 | 174.29 | 262.46 |
PM (g/mol) | Polyamide | 16 | 17 | 18 | 20 | 32 | 40 | 44 |
---|---|---|---|---|---|---|---|---|
Gas | CH4 | OH− | H2O | H4O2+ | O2 | −CH−CH−CH2 | CO2 | |
PA11 | 430 | 430 | 430 | 430 | 432 | 430 | 430 | |
Temperature (°C) | PA11_2CF | 430 | 430 | 430 | 430 | 432 | 430 | 430 |
PA11_CF + EP | 430 500 * | 430 500 * | 430 500 * | 430 500 * | 432 500 * | 430 500* | 430 500 * | |
PA11_CF + EP LPP | 430 | 430 | 430 | 430 | 430 | 430 | 430 | |
PA12 | 350 450 | 450 | 450 | 450 | 350 450 | 450 | 350 450 | |
PA12_2CF | 365 465 | 465 | 465 | 465 | 365 465 | 465 | 465 | |
PA12_CF + EP | 485 | 485 | 485 | — | 485 | — | 485 | |
PA12_CF + EP LPP | 485 | 485 | 485 | — | 485 | — | 485 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abenojar, J.; Aparicio, G.M.; Butenegro, J.A.; Bahrami, M.; Martínez, M.A. Decomposition Kinetics and Lifetime Estimation of Thermoplastic Composite Materials Reinforced with rCFRP. Materials 2024, 17, 2054. https://doi.org/10.3390/ma17092054
Abenojar J, Aparicio GM, Butenegro JA, Bahrami M, Martínez MA. Decomposition Kinetics and Lifetime Estimation of Thermoplastic Composite Materials Reinforced with rCFRP. Materials. 2024; 17(9):2054. https://doi.org/10.3390/ma17092054
Chicago/Turabian StyleAbenojar, Juana, Gladis Miriam Aparicio, José Antonio Butenegro, Mohsen Bahrami, and Miguel Angel Martínez. 2024. "Decomposition Kinetics and Lifetime Estimation of Thermoplastic Composite Materials Reinforced with rCFRP" Materials 17, no. 9: 2054. https://doi.org/10.3390/ma17092054
APA StyleAbenojar, J., Aparicio, G. M., Butenegro, J. A., Bahrami, M., & Martínez, M. A. (2024). Decomposition Kinetics and Lifetime Estimation of Thermoplastic Composite Materials Reinforced with rCFRP. Materials, 17(9), 2054. https://doi.org/10.3390/ma17092054