Rheological Properties of Silica-Fume-Modified Bioasphalt and Road Performance of Mixtures
Abstract
:1. Introduction
2. Test Materials and Methods
2.1. Raw Materials
2.1.1. Matrix Asphalt
2.1.2. Silica Fume
2.1.3. Bio-Oil
2.1.4. Aggregates
2.1.5. Grading Curve
2.2. Preparation of Bio-Oil/SF-Modified Asphalt
2.3. Test Methods
2.3.1. Temperature Sweep (TS)
2.3.2. Multiple Stress Creep Recovery (MSCR)
2.3.3. Rotational Viscosity
2.3.4. Bending Beam Rheometer (BBR)
2.4. Asphalt Mixture Road Behavior Test
2.4.1. Rutting Resistance at High Temperature
2.4.2. Low-Temperature Anticracking Properties
2.4.3. Freeze–Thaw Splitting Strength
2.4.4. Splitting Fatigue
3. Results and Analysis
3.1. TS Analysis
3.2. Antiaging Performance
3.3. MSCR Analysis
3.4. Viscosity Results Analysis
3.5. Low-Temperature Rheological Characteristics
3.6. Road Performance
3.6.1. Rutting Resistance at High Temperature
3.6.2. Low-Temperature Anticracking Characteristics
3.6.3. Water Damage Resistance
3.6.4. Fatigue Life
4. Conclusions
- (1)
- Incorporating bio-oil strengthened the low-temperature characteristics of matrix asphalt. However, bio-oil significantly reduced the high-temperature characteristics of matrix asphalt.
- (2)
- The G*/sinδ, R, and Jnr indexes showed that adding SF could improve resistance to the permanent deformation of bioasphalt at high temperatures. The RFAI and VTS indexes showed that adding SF improved bioasphalt’s aging resistance and temperature stability.
- (3)
- The m, S, and m/S indexes at −12 °C and −18 °C indicated that the rise in the dosage of SF weakened the low-temperature characteristics of bioasphalt. However, when the dosage of SF was less than 8%, the low-temperature characteristics of bio-oil + SF were still superior to those of matrix asphalt.
- (4)
- The high-temperature stabilization, low-temperature anticracking, water damage resistance, and fatigue durability of bio-oil + SF mixtures were superior to those of matrix asphalt mixtures. The best road behavior was shown by 5%Bio + 8%SF mixtures.
- (5)
- The test results of SF-modified bioasphalt and mixtures provided a specific scientific basis for the green and efficient application of bio-oil and SF. However, this study lacks an analysis of the SF + bio-oil mechanism. The next step will continue to explore the micromechanism of SF-modified bioasphalt and its practical engineering applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Si, C.; Fan, T.; Zhu, Y.; Li, S.; Ren, S.; Lin, P. Research on the optimal dosage of Bio-Oil/Lignin composite modified asphalt based on rheological and Anti-Aging properties. Constr. Build. Mater. 2023, 389, 131796. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Vivekanandhan, S.; Pin, J.-M.; Misra, M. Composites from renewable and sustainable resources: Challenges and innovations. Science 2018, 362, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lv, S.; Liu, J.; Peng, X.; Lu, W.; Wang, Z.; Xie, N. Performance evaluation of aged asphalt rejuvenated with various bio-oils based on rheological property index. J. Clean. Prod. 2023, 385, 135593. [Google Scholar] [CrossRef]
- Wang, H.; Jing, Y.; Zhang, J.; Cao, Y.; Lyu, L. Preparation and performance evaluation of swine manure bio-oil modified rubber asphalt binder. Constr. Build. Mater. 2021, 294, 123584. [Google Scholar] [CrossRef]
- Mills-Beale, J.; You, Z.; Fini, E.; Zada, B.; Lee, C.H.; Yap, Y.K. Aging Influence on Rheology Properties of Petroleum-Based Asphalt Modified with Biobinder. J. Mater. Civ. Eng. 2014, 26, 358–366. [Google Scholar] [CrossRef]
- Zhang, L.; Bahia, H.; Tan, Y. Effect of bio-based and refined waste oil modifiers on low temperature performance of asphalt binders. Constr. Build. Mater. 2015, 86, 95–100. [Google Scholar] [CrossRef]
- Sun, Z.; Yi, J.; Huang, Y.; Feng, D.; Guo, C. Properties of asphalt binder modified by bio-oil derived from waste cooking oil. Constr. Build. Mater. 2016, 102, 496–504. [Google Scholar] [CrossRef]
- Caro, S.; Vega, N.; Husserl, J.; Alvarez, A.E. Studying the impact of biomodifiers produced from agroindustrial wastes on asphalt binders. Constr. Build. Mater. 2016, 126, 369–380. [Google Scholar] [CrossRef]
- Yang, X.; Mills-Beale, J.; You, Z. Chemical characterization and oxidative aging of bio-asphalt and its compatibility with petroleum asphalt. J. Clean. Prod. 2017, 142, 1837–1847. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, H.; You, Z.; Shao, L.; Golroo, A.; Chen, Y. Mechanism and rheological characterization of MDI modified Wood-Based Bio-Oil asphalt. Constr. Build. Mater. 2021, 309. [Google Scholar] [CrossRef]
- Fernandes, S.R.M.; Silva, H.M.R.D.; Oliveira, J.R.M. Developing enhanced modified bitumens with waste engine oil products combined with polymers. Constr. Build. Mater. 2018, 160, 714–724. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, H.; Chen, X.; Yang, X.; You, Z.; Dong, S.; Gao, J. Shear property, high-temperature rheological performance and low-temperature flexibility of asphalt mastics modified with bio-oil. Constr. Build. Mater. 2018, 174, 30–37. [Google Scholar] [CrossRef]
- Ju, Z.; Ge, D.; Wu, Z.; Xue, Y.; Lv, S.; Li, Y.; Fan, X. The performance evaluation of high content bio-asphalt modified with polyphosphoric acid. Constr. Build. Mater. 2022, 361. [Google Scholar] [CrossRef]
- Lv, S.; Peng, X.; Liu, C.; Qu, F.; Zhu, X.; Tian, W.; Zheng, J. Aging resistance evaluation of asphalt modified by Buton-rock asphalt and bio-oil based on the rheological and microscopic characteristics. J. Clean. Prod. 2020, 257, 120589. [Google Scholar] [CrossRef]
- Zhao, X.; Zang, G.; Gong, J.; Ren, J. Study on preparation and pavement properties of highperformance modified bio-asphalt binder. J. Shandong Univ. Technol. 2020, 34, 28–32. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, C.; Lv, S.; Ge, D.; Ju, Z.; Fan, G. Research on rheological properties of CNT-SBR modified asphalt. Constr. Build. Mater. 2022, 361, 129587. [Google Scholar] [CrossRef]
- Sun, C.; Hao, R.; Sun, H.; Lu, T.; Tang, Q.; Wu, Y.; Wang, Y. Investigation on chemically modified carbon black in enhancing asphalt performance. Case Stud. Constr. Mater. 2023, 19, e02488. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, H.; Zhang, Y. Influence of layered silicate types on physical, rheological and aging properties of SBS modified asphalt with multi-dimensional nanomaterials. Constr. Build. Mater. 2019, 228, 116735. [Google Scholar] [CrossRef]
- Li, Y.; He, T.; Tang, J. Performance evaluation of asphalt binders incorporating surface-modified diatomite and bio-oil: A value-added utilization of natural resource. Case Stud. Constr. Mater. 2024, 20, e02988. [Google Scholar] [CrossRef]
- Yadykova, A.Y.; Ilyin, S.O. Bitumen improvement with bio-oil and natural or organomodified montmorillonite: Structure, rheology, and adhesion of composite asphalt binders. Constr. Build. Mater. 2023, 364, 129919. [Google Scholar] [CrossRef]
- Jia, X. Study on Microstructure, Action Mechanismand Mixture Performance of Inorganicmicropowder Modified Asphalt. Ph.D. Thesis, Chongqing Jiaotong University, Chongqing, China, 2022. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, W.; Feng, H.; Cao, K. High and Low Temperature Performance and Fatigue Properties of Silica Fume/SBS Compound Modified Asphalt. Materials 2020, 13, 4446. [Google Scholar] [CrossRef]
- Song, Y. Study on Silice Fume for Modified Asphalt by Indoor Experiment. Master’s Thesis, Beijing University of Technology, Beijing, China, 2008. [Google Scholar]
- Luo, Z. The Preparation and Performance Study of Silica Fume/SBS Composite Modifiedasphalt and Its Mixture. Master’s Thesis, Lanzhou University of Technology, Lanzhou, China, 2014. [Google Scholar]
- Shang, W.; Zhan, B. Investigation of aging kinetics of silica fume modified asphalt. J. Hefei Univ. Technol. 2015, 38, 534–537. [Google Scholar]
- Feng, H.; Xu, W.; Ji, W. The analysis on rheological properties ofsilicon powder/SBS compositemodified asphalt base on dynamic shear test. J. Guangxi Univ. 2019, 44, 191–196. [Google Scholar] [CrossRef]
- Yadykova, A.Y.; Ilyin, S.O. Rheological and adhesive properties of nanocomposite bitumen binders based on hydrophilic or hydrophobic silica and modified with bio-oil. Constr. Build. Mater. 2022, 342, 127946. [Google Scholar] [CrossRef]
- Khudair, A.Z.A.; Abdulzahra, M.Z.; Hamza, A.H. Effect of Silica fume on Cold Mix Asphalt Mixture. IOP Conf. Ser. Mater. Sci. Eng. 2020, 737, 012147. [Google Scholar] [CrossRef]
- Cao, K. Study on Road Performance of the Silica Fume/SBS Composite Modified Asphalt Mixture. Master’s Thesis, Northeast Forestry University, Harbin, China, 2019. [Google Scholar] [CrossRef]
- ASTM D 5-05; Standard Test Method for Penetration of Bituminous Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 2005.
- ASTM D 113-99; Standard Test Method for Ductility of Bituminous Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 1999.
- ASTM D 36-06; Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). American Society for Testing and Materials: West Conshohocken, PA, USA, 2006.
- ASTM D 4402; Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. American Society for Testing and Materials: West Conshohocken, PA, USA, 2012.
- ASTM D 2872; Test Method for Effect of Heat and Air on a MovingFilm of Asphalt (Rolling Thin-Film Oven Test). American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- JTG E42-2005; Test Methods of Aggregate for Highway Engineering. Research Institute of Highway Ministry of Transport: Beijing, China, 2005; p. 147P.;A4. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SCSD000005041126&DbName=SCSD (accessed on 24 September 2013).
- AASHTO T 315-20; Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). American Association of State and Highway Transportation Officials: Washington, DC, USA, 2020.
- AASHTO T 350-14; Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). American Association of State and Highway Transportation Officials: Washington, DC, USA, 2014.
- AASHTO T 316; Standard Method of Test for Viscosity Determination of Asphalt Binder Using Rotational Viscometer. American Association of State and Highway Transportation Officials: Washington, DC, USA, 2022.
- AASHTO T 313-19; Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR). American Association of State and Highway Transportation Officials: Washington, DC, USA, 2019.
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Research Institute of Highway Ministry of Transport: Beijing, China, 2011; p. 373P.;A4.
- Xue, Y.; Liu, C.; Qu, J.; Lv, S.; Ju, Z.; Ding, S.; An, H.; Ren, K. Research on pavement performance of recycled asphalt mixture based on separation technology of asphalt and aggregate in RAP. Constr. Build. Mater. 2023, 393, 132103. [Google Scholar] [CrossRef]
- Liang, B.; Zhang, H.; Liu, Z.; Liao, W. Research progress on properties of fiber modified asphalt mixture. J. China Foreign Highw. 2023, 43, 1–16. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, B.; Xue, Y.; He, Y.; Ding, S.; Wen, Y.; Lv, S. Synchronous method and mechanism of asphalt-aggregate separation and regeneration of reclaimed asphalt pavement. Constr. Build. Mater. 2023, 378, 131127. [Google Scholar] [CrossRef]
- Huang, J.; Yan, K.; Wang, M.; Zhang, X. Enhancing rheological and aging performance of matrix asphalt through thermoplastic phenol-formaldehyde resin-based intercalated clay nanocomposites: Mechanisms and effects. Constr. Build. Mater. 2024, 411, 134351. [Google Scholar] [CrossRef]
- Chang, J. Influence of Different Waste Oils on Rheological Properties of Aged SBS Asphalt. J. Highw. Transp. Res. Dev. 2023, 40, 33–40. [Google Scholar]
- Ye, X.; Zou, X.; Tian, F. Study on lnfluence of Ultraviolet Radiation Aging on Rheological Properties of SBs-MCR Modified Asphalt. J. China Foreign Highw. 2022, 42, 236–240. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, C.; Shi, Q.; Ju, Z.; Fan, G.; Zhang, C.; Lv, S. Road performance and mechanism of Hot in-place recycling asphalt mixture modified by direct-to-plant SBS. Constr. Build. Mater. 2024, 416, 135122. [Google Scholar] [CrossRef]
- Liu, S.; Cao, W.; Shang, S.; Qi, H.; Fang, J. Analysis and application of relationships between low-temperature rheological performance parameters of asphalt binders. Constr. Build. Mater. 2010, 24, 471–478. [Google Scholar] [CrossRef]
- JTG D50-2006; Specifications for Design of Highway Asphalt Pavement. Zhongjiao Highway Planning and Design Institute: Beijing, China, 2006; p. 143P.;A4. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SCSD000005136705&DbName=SCSD (accessed on 24 September 2013).
Technical Indexes | Unit | Test Results | Specification Requirements | Test Methods |
---|---|---|---|---|
Penetration (25 °C, 5 s, 100 g) | 0.1 mm | 67 | 60~80 | ASTM D 5 [30] |
Ductility (5 cm/min, 10 °C) | cm | 32 | ≥15 | ASTM D 113 [31] |
Softening point | °C | 48 | ≥46 | ASTM D 36 [32] |
Viscosity (60 °C) | Pa·s | 219 | ≥180 | ASTM D 4402 [33] |
after RTFOT aging | ||||
Mass loss | % | 0.024 | ≤±0.8 | ASTM D 2872 [34] |
Residual penetration ratio (25 °C, 5 s, 100 g) | % | 67 | ≥61 | ASTM D 5 |
Ductility (5 cm/min, 10°C) | cm | 8 | ≥6 | ASTM D 113 |
Indexes | Results |
---|---|
Appearance | Pale grayish-white powder |
SiO2 content (%) | 92.88 |
PH value | 6–8 |
Whiteness (%) | 0.24 |
Particle size distribution (μm) | 0.1–0.3 |
Specific surface area (m2/g) | 25.37 |
Indicators | Results |
---|---|
Acid value (mgKOH/g) | 51 |
Moisture content (%) | ≤0.3 |
Kinematic viscosity (mm2/s) | 148 |
Density (g/mL) | 0.93 |
Fatty acids content (%) | 65 |
Technical Indicators | Results | Standards |
---|---|---|
Los Angeles abrasion test (%) | 23 | ≤28 |
Crushing value (%) | 12.1 | ≤28 |
Acicular and flaky grain in aggregate (%) | 10.3 | ≤15 |
Technical Indicators | Results | Standards |
---|---|---|
Water absorption (%) | 0.5 | ≤2.0 |
Mud content (%) | 1.7 | ≤3 |
Sand equivalent (%) | 69 | ≥60 |
SF Content | 0% | 2% | 4% | 6% | 8% | 10% |
---|---|---|---|---|---|---|
Abbreviation | 5%Bio | 5%Bio + 2%SF | 5%Bio + 4%SF | 5%Bio + 6%SF | 5%Bio+ 8%SF | 5%Bio + 10%SF |
Type of Asphalt | High-Temperature Grade |
---|---|
Matrix asphalt | PG64 |
5%Bio | PG52 |
5%Bio + 2%SF | PG58 |
5%Bio + 4%SF | PG58 |
5%Bio + 6%SF | PG58 |
5%Bio + 8%SF | PG64 |
5%Bio + 10%SF | PG64 |
Type of Asphalt | m | n | R2 |
---|---|---|---|
Matrix asphalt | 2.497 | 6.928 | 0.99 |
5%Bio | 3.239 | 8.845 | 0.98 |
5%Bio + 2%SF | 2.866 | 7.883 | 0.99 |
5%Bio + 4%SF | 2.696 | 7.443 | 0.99 |
5%Bio + 6%SF | 2.392 | 6.657 | 0.99 |
5%Bio + 8%SF | 2.092 | 5.876 | 0.99 |
5%Bio + 10%SF | 1.901 | 5.384 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, G.; Xue, Y.; Li, Z.; Lu, W. Rheological Properties of Silica-Fume-Modified Bioasphalt and Road Performance of Mixtures. Materials 2024, 17, 2090. https://doi.org/10.3390/ma17092090
Hou G, Xue Y, Li Z, Lu W. Rheological Properties of Silica-Fume-Modified Bioasphalt and Road Performance of Mixtures. Materials. 2024; 17(9):2090. https://doi.org/10.3390/ma17092090
Chicago/Turabian StyleHou, Gui, Yanhua Xue, Zhe Li, and Weiwei Lu. 2024. "Rheological Properties of Silica-Fume-Modified Bioasphalt and Road Performance of Mixtures" Materials 17, no. 9: 2090. https://doi.org/10.3390/ma17092090
APA StyleHou, G., Xue, Y., Li, Z., & Lu, W. (2024). Rheological Properties of Silica-Fume-Modified Bioasphalt and Road Performance of Mixtures. Materials, 17(9), 2090. https://doi.org/10.3390/ma17092090